Sarauer, Ellen und Schwabe, Mierk und Weiss, Philipp und Lauer, Axel und Stier, Philip und Eyring, Veronika (2024) Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models. In: Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models. The Twelfth International Conference on Learning Representations. Workshop: Tackling Climate Change with Machine Learning, 2024-05-07 - 2024-05-11, Wien, Österreich.
PDF
11MB | |
PDF
1MB |
Kurzfassung
In this study, we develop a physics-informed machine learning (ML)-based cloud microphysics parameterization for the ICON model. By training the ML parameterization on high-resolution simulation data, we aim to improve Earth System Models (ESMs) in comparison to traditional parameterization schemes. We investigate the usage of a multilayer perceptron (MLP) with feature engineering and physics-constraints, and use explainability techniques to understand the relationship between input features and model output. Our novel approach yields promising results, with the physics-informed ML-based cloud microphysics parameterization achieving an R score up to 0.777 for an individual feature. Additionally, we demonstrate a notable improvement in the overall performance in comparison to a baseline MLP, increasing its average R score from 0.290 to 0.613 across all variables. This approach to improve the representation of cloud microphysics in ESMs promises to enhance climate projections, contributing to a better understanding of climate change.
elib-URL des Eintrags: | https://elib.dlr.de/204924/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster, Anderer) | ||||||||||||||||||||||||||||
Titel: | Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Mai 2024 | ||||||||||||||||||||||||||||
Erschienen in: | Physics-informed Machine Learning-based Cloud Microphysics parameterization for Earth System Models | ||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Machine Learning, Earth System Model, Cloud Microphysics, Cloud Parameterization | ||||||||||||||||||||||||||||
Veranstaltungstitel: | The Twelfth International Conference on Learning Representations. Workshop: Tackling Climate Change with Machine Learning | ||||||||||||||||||||||||||||
Veranstaltungsort: | Wien, Österreich | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Mai 2024 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 11 Mai 2024 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Quantencomputing-Initiative | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | QC AW - Anwendungen | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | QC - Klim-QML | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Sarauer, Ellen | ||||||||||||||||||||||||||||
Hinterlegt am: | 25 Jun 2024 09:48 | ||||||||||||||||||||||||||||
Letzte Änderung: | 27 Aug 2024 11:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags