Mansour, Islam und Fischer, Georg und Hänsch, Ronny und Hajnsek, Irena und Papathanassiou, Konstantinos (2024) Correction of the Penetration Bias for InSAR DEM via Synergetic AI-Physical Modeling: A Greenland Case Study. In: International Geoscience and Remote Sensing Symposium (IGARSS). IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10642748.
PDF
1MB |
Kurzfassung
Rapid changes in the Greenland Ice Sheet require precise elevation monitoring to understand ice dynamics and predict sea level rise. X-band Interferometric Synthetic Aperture Radar (InSAR) has the potential for this purpose but is limited by microwave signal penetration biases, which can be a few meters. We present a novel hybrid modeling approach that integrates machine learning (ML) with physical models to enhance the estimation of the elevation bias in InSAR data at X-band. Our method addresses the limitations of traditional physical modeling techniques by parameterizing the vertical structure function using a ML model. This approach combines machine learning as input for the physical model. The results demonstrate the improvements in correcting elevation biases, thus increasing the accuracy of X-band InSAR DEMs over Greenland. This advancement has the potential for more precise elevation estimation and ice-sheet monitoring.
elib-URL des Eintrags: | https://elib.dlr.de/204480/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||||||||||||||
Titel: | Correction of the Penetration Bias for InSAR DEM via Synergetic AI-Physical Modeling: A Greenland Case Study | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | September 2024 | ||||||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10642748 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | X-band InSAR, TanDEM-X DEM, Elevation Monitoring, Hybrid Modeling, Machine Learning | ||||||||||||||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||||||
Veranstalter : | IEEE Geoscience and Remote Sensing Society | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - TerraSAR/TanDEM | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||||||||||
Hinterlegt von: | Mansour, Islam | ||||||||||||||||||||||||
Hinterlegt am: | 07 Jun 2024 11:05 | ||||||||||||||||||||||||
Letzte Änderung: | 08 Okt 2024 16:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags