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ABSTRACT 
 
Rapid changes in the Greenland Ice Sheet require precise 
elevation monitoring to understand ice dynamics and predict 
sea level rise. X-band Interferometric Synthetic Aperture 
Radar (InSAR) has the potential for this purpose but is limited 
by microwave signal penetration biases, which can be a few 
meters. We present a novel hybrid modeling approach that 
integrates machine learning (ML) with physical models to 
enhance the estimation of the elevation bias in InSAR data at 
X-band. Our method addresses the limitations of traditional 
physical modeling techniques by parameterizing the vertical 
structure function using a ML model. This approach 
combines machine learning as input for the physical model. 
The results demonstrate the improvements in correcting 
elevation biases, thus increasing the accuracy of X-band 
InSAR DEMs over Greenland. This advancement has the 
potential for more precise elevation estimation and ice-sheet 
monitoring.  

Index Terms— X-band InSAR, TanDEM-X DEM, 
Elevation Monitoring, Hybrid Modeling, Machine Learning 

1. INTRODUCTION 

Recent advances in Synthetic Aperture Radar (SAR) remote 
sensing have significantly improved our ability to monitor 
glaciers and ice sheets, offering systematic and frequent 
observations of polar regions. The capability of SAR to 
penetrate dry snow and ice provides valuable subsurface 
geophysical information, but it complicates the retrieval of 
consistent Digital Elevation Models (DEMs) due to 
penetration biases. Previous studies utilizing TanDEM-X 
DEM in Greenland have revealed a penetration bias of the 
order of a few meters comparing the InSAR DEM to altimeter 
and stereophotogrammetric measurements [1], [2]. This 
study introduces a novel hybrid modeling approach that 
integrates machine learning and physical models to estimate 
and correct penetration biases in X-band InSAR data from 
Greenland. Our approach aims to enhance the accuracy of 
elevation measurements, which is crucial to understanding 
ice dynamics and projecting sea level rise. The penetration 
bias depends on factors such as acquisition geometry 
(baseline configuration and incidence angle), snow and ice 

properties (e.g. melting, presence of fresh snow, grain size, 
refrozen melt features in the firn, and seasonal variation). 
Various approaches have been developed that rely on 
modeling and machine learning to compensate for this 
penetration bias, including empirically derived or model-
based estimates [1], [3]. We introduce a novel approach that 
leverages the synergies between machine learning and a 
model-based framework to address this penetration bias. We 
demonstrate this with TanDEM-X data acquired over the 
Greenland ice sheet in 2017. This InSAR DEM dataset is 
corrected using a hybrid-based modeling technique, and the 
results are benchmarked against a DEM derived from 
IceBridge ATM LiDAR.  

2. STUDY AREA 

For the investigation and assessment, we use a test site that 
covers a large transition across glacier zones starting from the 
summit towards the east coast of Greenland during 2017, 
providing a large elevation diversity. Greenland, with its vast 
ice sheets, is a critical area for investigating the impacts of 
climate change on glacial dynamics and associated processes. 
The study area extends over varying altitudes, ranging from 
coastal regions to elevations of 3500 m. This altitudinal 
diversity allows us to capture a wide spectrum of glacier 
zones at different elevation, which is crucial for training a 
robust generalizable hybrid model.  

3. DATASET 

We use single-baseline SAR imagery acquired from 
TanDEM-X in 2017 to derive the InSAR DEM products of 
our study area. As reference data for training and validation, 
we use NASA IceBridge ATM LiDAR-derived elevations 
and aim to use the CryoSAT-2 radar altimeter for verification 
of the model [4], [5]. 
 
3.1. TanDEM-X InSAR DEM 
We opt for 14 TanDEM-X CoSSC acquisitions available over 
Greenland, spanning from the summit to the East Coast. Our 
selection criteria ensure temporal and spatial alignment with 
the 2017 IceBridge data, as shown in Figure 1. 



 
Post-processing was conducted to derive the following 
products: InSAR elevation, coherence <, backscatter *), 
angle of incidence E, vertical wavenumber κ1, and reference 
elevation to the same map projection. However, achieving 
vertical calibration for the generated InSAR elevation proved 
to be a challenge. Calibration involved using the official 
TanDEM-X global DEM as a reference DEM in the InSAR 
processing [6]. Additional calibration steps accounted for the 
surface elevation change between the TanDEM-X global 
DEM and our 2017 data using surface elevation change data 
from ESA Greenland CCI [7]. Further, a constant offset 
between TanDEM-X and ATM at rock surfaces on the coast 
was removed. Figure 2 shows the penetration bias observed 
in the TanDEM-X calibrated DEM compared to the training 
reference DEM from ATM LiDAR. As expected, the 
penetration bias increases with elevation [1], [2]. 

 
Figure 2: Penetration Bias in the TanDEM-X DEM when 
compared to ATM DEM. 

 
3.2. IceBridge and CryoSat-2 Data 
 
To train the hybrid model and evaluate the performance of 
the hybrid DEM penetration bias estimation, we use surface 
elevation data from the Airborne Topographic Mapper 
(ATM), obtained during the IceBridge survey. Its positional 
accuracy over the flat ice sheet is maintained within a margin 
of less than 1 m. For our assessment of DEMs, we rely on the 
IceBridge ATM DMS L3 Ames Stereo Pipeline 
Photogrammetric DEM dataset [4]. The original resolution of 
the IceBridge dataset is resampled to 25 m for our analysis, 
with an estimated error of approximately 0.12 m.  

4. METHODOLOGY 

4.1. Penetration Bias Estimation with Physical Model 
 
The physical model to estimate penetration depth is based on 
a correlation between the InSAR observation space and the 
vertical scattering distribution in the snow, firn and ice, which 
depends on geophysical parameters (e.g. density, structure 
and grain size).  
The main observable of interferometric SAR, the 
interferometric complex coherence, denoted as  γ=, serves as a 
representation of the cross-correlation between two 
interferometric acquisitions s9(wJJJ⃗ ) and s+(wJJJ⃗ ). This 
coherence metric is scaled between zero and one and is 
acquired at a specified polarization indicated by the unit 
vector LJJ⃗   and defined as: 

<=	(LJJ⃗ ) =
⟨N9(LJJ⃗ )N+∗(LJJ⃗ )⟩

P⟨N9(LJJ⃗ )N9∗(LJJ⃗ )⟩⟨N+	(LJJ⃗ )	N+∗(LJJ⃗ )⟩
(1) 

 
The location of the interferometric phase center, which is 
used to derive the InSAR DEM, is determined by ∠@A	B+

. The 
penetration bias (!!"#$) is then the difference between the 
phase center QRSC7DEF, located in the subsurface, and actual 
surface QRSFGH, which is defined as: 

!!"#$ = QRSC7DEF −QRSFGH (2) 
 
The interferometric phase to height sensitivity is described by 
the vertical wavenumber κ1,defined as follows: 

κ1 =
4V
W

ΔE5
sin θ5

(3) 
 
Here, λ represents the wavelength in free space, E5 , is the 
incidence angle, and  Δθ5 is the difference in θ5 introduced by 
the spatial baseline between acquisitions, as illustrated in 
Figure 3.  
To estimate the penetration bias, which depends on the 
vertical scattering profile within a glacier volume for a single-
baseline scenario, we initiate the process with the equation 
representing the complex coherence in a semi-infinite volume 
(following the correction of range spectral decorrelation) [8], 
[9]: 

<=	 = +IB+,, ⋅ ∫
&(%))

JK ⋅ +JI⋅B+,  -%
∫ &(%))
JK  -%

(4) 

 

Figure 1: Map of TanDEM-X, NASA IceBridge ATM and CryoSAT-2 data. 



where the vertical coordinate %) is situated at the surface, and 
&(%) is the unknown vertical structure function within the 
firn, illustrating the changes in the radar cross-section with 
depth [8]. Then the &(%) can be substituted with any given 
profile, in the case of our experiment, we substitute with a 
backscattering profile for a uniform volume (UV), which is 
defined as [10], [11]: 

&(%) = **)+
+,
-!"# (5) 

 
where **) is the nominal backscatter power per unit volume 
and -./0 is the one-way penetration depth. The vertical 
structure function f(z) in the subsurface of an ice sheet 
requires to consider the permittivity of the medium and its 
effects on refraction and propagation. For this, formulations 
using the vertical wavenumber in the volume κ,$%& are found 
in literature. However, because the TanDEM-X DEMs were 
processed under the assumption of free-space propagation, 
also the penetration bias correction must be calculated with 
free-space permittivity and thus the free-space vertical 
wavenumber is κ1 applied. 

 
Figure 3: Interferometric geometry with penetration in 
the snow, firn and ice. / is the horizontal baseline, /2 is 
the perpendicular baseline, 0 is the slant range distance, 
13 is the radar look angle, and 213 is the change in radar 
look angle caused by the baseline. 

 
4.2.  Hybrid-Based Model 
 
To accurately model and predict coherence and penetration 
bias, we define a loss function with the objective to minimize 
the discrepancies between the estimated and observed values 
of the coherence and penetration bias. Let γ4 represent the 
estimated coherence and !̂!"#$ the estimated penetration bias.  
The loss function ℒ is formulated as the sum of the squared 
differences for coherence and penetration bias: 

ℒ =   18  9: ;<=	>5   −  <=	5@
+  +  ;!̂!"#$,5   −  !!"#$,5@

+ B
7

589
(6) 

The implementation of the hybrid model involves the 
following steps: 

1. Input Features: D,Vol, E:, and <=	. 
2. Neural Network Output: Estimated -./0 
3. Calculation of &(%): based on Equation 5 
4. Estimation of <=	> and !̂!"#$: based on Equation 2 and 

Equation 4 
The model is subject to the constraint that the estimated -pen 
should be within the range of 0 to -50 meters.	Figure 4 
illustrates the training phase architecture, while Figure 5 
shows the inference phase for estimating penetration bias. 
Such an architecture allows the incorporation of any generic 
function, &(%), during the modeling process and to use more 
sophisticated parameterization of &(%). 
 

 
Figure 4: Schematic representation of the hybrid-based 
model (training phase). 

 
Figure 5: Schematic representation of the hybrid-based 
model (inference phase). 

5. RESULTS 

Using our hybrid-based model, we benchmark the 
performance of the corrected TanDEM-X DEM against the 
ATM DEM from 2017. The evaluation is conducted across a 
range of elevation intervals to assess the model's accuracy 
and reliability. Figure 6 presents a mosaic of the estimated 
penetration bias !̂!"#$  using the hybrid-based method for 
multiple TanDEM-X scenes. The results show the influence 
of different baseline configurations and incidence angles, 
manifesting as variations in penetration bias. The mosaic 
illustrates a general trend of deeper penetration at higher 
elevations (with the Greenland summit inside the scene on the 
very left), decreasing towards the coast (on the right), 
consistent with the observed bias shown in Figure 2. 
The corrected TanDEM-X DEM demonstrates consistent 
accuracy across various elevation ranges. Figure 7 shows the 

Δ"! "!

!⊥

!

#bias

"



estimated !̂!"#$ for all acquisitions, indicating a trend of 
deeper penetration at higher elevations and decreasing 
towards the coast. This pattern aligns with the observed bias 
trend in Figure 2.  
 

 
Figure 7: Shows the prediction of the penetration bias for 
the TanDEM-X DEM using the hybrid-based method for 
different elevation ranges. 

 

Figure 8: Presents the absolute error distribution of the 
corrected TanDEM-X DEM using the hybrid-based 
method compared to the ATM DEM for different 
elevation ranges.  

Figure 8 illustrates the absolute error distribution of the 
corrected TanDEM-X DEM using the hybrid-based method 
compared to the ATM DEM for different elevation ranges. 
The corrected DEM's accuracy remains consistent across 
elevation ranges, with MAE values reflecting a substantial 
improvement over the original penetration bias values in 
Figure 2. The hybrid-based model significantly improved the 
accuracy of the TanDEM-X DEM. The overall mean absolute 
error (MAE) across all elevation intervals was approximately 
0.44 meters. This reduction in error demonstrates the model's 
ability to effectively correct for penetration bias, leading to 
more precise elevation measurements. 
The hybrid-based model effectively combines the strengths 
of traditional model-based methods and empirical approaches 
to correct penetration bias. Initial results indicate that this 
method can enhance the accuracy and reliability of corrected 
DEMs over the Greenland ice sheet. The hybrid-based 
method offers a robust and adaptable solution, capable of 
managing variability in baseline configurations with a limited 
training dataset. Additionally, this approach demonstrates 
flexibility in incorporating multi-modal data as input features 
that can be utilized for the physical model. 

6. SUMMARY 

This study introduces a novel methodology to compensate for 
penetration bias in InSAR-derived DEMs caused by the 
microwave signal's propagation into ice. By integrating 
physical modeling with machine learning techniques, we 
significantly enhanced the accuracy of TanDEM-X DEMs 
compared to ATM DEMs, achieving a mean absolute error of 
approximately 0.44 meters across different elevation ranges. 
The hybrid model's success highlights the potential of 
combining machine learning with physical models to correct 
elevation biases in X-band InSAR data, leading to more 
precise elevation estimates. Future work will involve 
comparing the corrected TanDEM-X DEM with CryoSat-2 
DEM for further validation.  
  

Figure 6: Mosaic of estimated #$%&'( using the hybrid-based method for multiple TanDEM-X acquisition with different 
incidence angles and baseline. 
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