Liu, Chenying and Albrecht, Conrad M and Wang, Yi and Zhu, Xiao Xiang (2024) CromSS: Cross-Modal Pre-Training with Noisy Labels for Remote Sensing Image Segmentation. In: International Conference on Learning Representations, ICLR, pp. 1-7. ICLR 2024, 2024-05-07, Vienna, Austria. doi: 10.48550/arXiv.2405.01217.
PDF
302kB |
Official URL: https://ml-for-rs.github.io/iclr2024
Abstract
We study the potential of noisy labels y to pretrain semantic segmentation models in a multi-modal learning framework for geospatial applications. Specifically, we propose a novel Cross-modal Sample Selection method (CromSS) that utilizes the class distributions $P^{(d)}(x,c)$ over pixels $x$ and classes c modelled by multiple sensors/modalities $d$ of a given geospatial scene. Consistency of predictions across sensors d is jointly informed by the entropy of $P^{(d)}(x,c)$. Noisy label sampling we determine by the confidence of each sensor d in the noisy class label, $P^{(d)}(x,c=y(x))$. To verify the performance of our approach, we conduct experiments with Sentinel-1 (radar) and Sentinel-2 (optical) satellite imagery from the globally-sampled SSL4EO-S12 dataset. We pair those scenes with 9-class noisy labels sourced from the Google Dynamic World project for pretraining. Transfer learning evaluations (downstream task) on the DFC2020 dataset confirm the effectiveness of the proposed method for remote sensing image segmentation.
Item URL in elib: | https://elib.dlr.de/204344/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | CromSS: Cross-Modal Pre-Training with Noisy Labels for Remote Sensing Image Segmentation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||
Journal or Publication Title: | International Conference on Learning Representations, ICLR | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.48550/arXiv.2405.01217 | ||||||||||||||||||||
Page Range: | pp. 1-7 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | pre-training, noisy labels, semantic segmentation, multi-modal deep learning, sample selection, SSL4EO-S12 dataset, geospatial artificial intelligence | ||||||||||||||||||||
Event Title: | ICLR 2024 | ||||||||||||||||||||
Event Location: | Vienna, Austria | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Date: | 7 May 2024 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - Optical remote sensing | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||
Deposited On: | 27 May 2024 09:53 | ||||||||||||||||||||
Last Modified: | 29 May 2024 15:37 |
Repository Staff Only: item control page