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ABSTRACT

We study the potential of noisy labels y to pretrain semantic segmentation mod-
els in a multi-modal learning framework for geospatial applications. Specifically,
we propose a novel Cross-modal Sample Selection method (CromSS) that utilizes
the class distributions P (d)(x, c) over pixels x and classes c modelled by multi-
ple sensors/modalities d of a given geospatial scene. Consistency of predictions
across sensors d is jointly informed by the entropy of P (d)(x, c). Noisy label
sampling we determine by the confidence of each sensor d in the noisy class label,
P (d)(x, c = y(x)).
To verify the performance of our approach, we conduct experiments with Sentinel-
1 (radar) and Sentinel-2 (optical) satellite imagery from the globally-sampled
SSL4EO-S12 dataset. We pair those scenes with 9-class noisy labels sourced
from the Google Dynamic World project for pretraining. Transfer learning evalu-
ations (downstream task) on the DFC2020 dataset confirm the effectiveness of the
proposed method for remote sensing image segmentation.

1 INTRODUCTION

In the realm of Big Geospatial Data, one critical challenge is the lack of labeled data for deep learn-
ing model training. Self-Supervised Learning (SSL) received significant attention for its ability to
extract representative features from unlabeled data (Wang et al., 2022). Popular SSL algorithms
include generative Masked Autoencoders (MAE) (He et al., 2022) and contrastive learning methods
such as DINO (Caron et al., 2021) and MoCo (Chen et al., 2020). MAE is inspired by image recon-
struction, as most works utilizing vision transformers (ViTs) (Dosovitskiy et al., 2021). Constrastive
learning methods can make a difference for both, convolutional backbones and ViTs.

Recent studies suggest that deep learning models exhibit a degree of robustness against label noise
(Zhang et al., 2021; Liu et al., 2024). Promising results were observed in pretraining models with
extensive volumes of noisy social-media labels for image classification (Mahajan et al., 2018) and
video analysis (Ghadiyaram et al., 2019). In the realm of remote sensing (RS), pretraining on crowd-
sourced maps such as OpenStreetMap for building and road extraction has been surveyed (Kaiser
et al., 2017; Maggiori et al., 2017). These results indicate that inherently noisy labels can signifi-
cantly reduce the level of human supervision required to effectively train deep learning models.

Moreover, as the number of launched satellites grows, we are increasingly exposed to a variety of
satellite data types, including but not limited to multi-spectral, Light Detection And Ranging (Li-
DAR), and Synthetic Aperture Radar (SAR) data. Multi-modal learning has emerged as a prominent
area of study, where the complementary information showcases efficacy in boosting the learning
from different modalities, such as optical and LiDAR data (Xie et al., 2023), multi-spectral and
SAR data (Chen & Bruzzone, 2022). However, the application of multi-modal learning to improve
learning from noisy labels remains for detailed exploration.
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Figure 1: An example of sentinel-1 (VV, right) and sentinel-2 (RGB, left) data paired with noisy
labels (middle) from 4 seasons.

In this work, we study the potential of noisy labels in multi-modal pretraining settings for RS image
segmentation, where a novel Cross-modal Sample Selection method, referred to as CromSS, is intro-
duced to further mitigate the adverse impact of label noise. In the pretraining stage, we first employ
two U-Nets (Ronneberger et al., 2015) backboned with ResNet-50 (He et al., 2016) to separately
extract features and generate confidence masks within each modality. After that, the sample selec-
tion is implemented for each modality on its enhanced confidence masks by fortifying the shared
information across modalities. Given that radar and optical satellites are sensitive to distinct fea-
tures on the ground1, such cross-modal enhancement bears potential to boost the mutual learning
between modalities. We test middle and late fusion strategies to improve the architecture design for
multi-modal learning. In our experiments, we utilize Sentinel-1 (S1) of radar and Sentinel-2 (S2) of
multi-spectral data from the SSL4EO-S12 dataset (Wang et al., 2023) as two modalities. We pair
those scenes with pixel-wise noisy labels of the Google Dynamic World (DW) project (Brown et al.,
2022) for pretraining. Evaluation of the pretrained ResNet-50 encoders is based on the DFC2020
dataset (Yokoya, 2019) referenced to pretrained DINO and MoCo models presented as baselines in
the SSL4EO-S12 work.

2 DATA

In the pretraining stage, we utilize the extended version of the SSL4EO-S12 dataset, a large-scale
self-supervision dataset in Earth observation, plus 9-class noisy labels sourced from the DW project
on the Google Earth Engine as illustrated in Figure 1. SSL4EO-S12 sampled data globally from
251,079 locations. Each location corresponds to 4 S1 and S2 image pairs of 264×264 pixels from
4 different seasons, among which 103,793 locations have noisy label masks matched for all the
seasons. We only utilize the image-label pairs of these 103,793 locations for pretraining with noisy
labels.

Notice that this dataset is a good reflection of real cases, where noisy labels are still harder to
obtain compared to images, thus of a smaller size than unlabeled data. We utilize DFC2020 as the
downstream segmentation task, where the 986 validation patches are used as the fine-tuning training
data with the 5128 test ones for test.

3 METHODOLOGY

Our methodology links semantic segmentation maps of single-modal models by two principles: (a)
consistent prediction of the physical ground truth (consistency loss Lc), and (b) tolerance to noisy
supervision (segmentation loss Ls). For the latter, we extend the idea of Cao & Huang (2022)
working on a single modality to multiple modalities with cross-modal interactions for estimating the
uncertainty of a given pixel-level class label. Each modality-specific model predicts the probability
P (d) of a given noisy label at a physical location. While one model d = 1 may be certain about
the label y, another d = 2 may assign low probability: P (1)(y) ≫ P (2)(y). Section 3.2 details
on how we integrate these information to obtain a cross-modality score of a label perceived noisy.
Similarly, we exploit the entropy of P (d) to introduced a criterion for a cross-modality consistency
loss on label predictions between single-modality models. The overall approach is summarized by
Figure 2, where Q(d) represents an estimate of P (d).

1e.g., persistant metal scatterers in SAR have little signatur in optical sensors
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Figure 2: Illustration of the proposed CromSS. The decoders in the middle share the weights when
middle fusion is applied. In late fusion, they are separately optimized per modality. The shaded
areas (green to the left, purple to the right) highlight the key components of cross-modal sample
selection.

3.1 MULTI-MODAL FUSION

We employ middle and late multi-modal fusion (Chen & Bruzzone, 2022) to explore the comple-
mentary information across modalities to aid model training. Our fusion strategies do not concate-
nate feature vectors of different modalities. While middle fusion shares a common decoder for all
modalities, late fusion retains individual decoders.

3.2 CROSS-MODAL SAMPLE SELECTION

As depicted by Figure 2, the key in CromSS when compared to naive multi-modal training is the
introduction of sample selection masks W (d)

l/e (the shaded areas in Figure 2). They serve as weights

for calculating the segmentation and consistency losses, Ls and Lc, cf. the label-based masks W (d)
l

and the entity-based masks W (d)
e for modality d.

To compute W
(d)
l and W

(d)
e , we first generate the corresponding confidence masks F (d)

l and F
(d)
e

from the softmax outputs, i.e., the estimated class distributions Q(d) for P (d). Let q(d)i,j,c ∈ Q(d)

denote the softmax output at image pixel location (i, j) and class c, and yi,j be its given noisy label.
Then, we take q

(d)
i,j,c with c = yi,j as the estimated label-based confidence scores in F

(d)
l . For the

entity-based confidence, we define f
(d)
(e)i,j ∈ F
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e using the entropy of its softmax vector h(d)

i,j as
follows,

f
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where C is the total number of classes, K = logC is the upper bound of hi,j ∈ [0,K] when
qi,j,c = 1/C for c = 1, · · · , C, i.e., equal distribution of maximum entropy. For two modalities
d ∈ {1, 2}, the final confidence masks are combined into the following:

F ′(1/2)
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where the factor F (1/2)
l/e F

(2/1)
l/e serves to magnify the selection probabilities of the samples exhibiting

high confidence while diminishing cases where both modalities d = 1 and d = 2 agree on low
confidence score. To generate final sample selection masks, we utilize a soft selection strategy
rather than the one-hot selection masks for W

(d)
l , in order to avoid models from enforcing their

own prediction errors. Mathematically speaking: given the selection ratio α ∈ [0, 1], we define
w

(d)
i,j ∈ W

(d)
l as,

w
(d)
i,j = min

[
1, f ′(d)

i,j /w
]

, (3)
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where f ′(d)
i,j ∈ F ′(d)

l , w is the (α · n)th highest value in F ′(d)
l with n denoting the size of F ′(d)

l .

For the consistency loss, we utilize the weighting factor γ ∈ [0, 1] to generate W
(d)
e from F ′(d)

e

as W
(d)
e = (1 − γ) + γF ′(d)

e with γ gradually ramping up from 0 to 1 during the training. With
the losses weighted by W

(d)
l and W

(d)
e , the samples of lower confidence can contribute less in the

optimization process.

4 EXPERIMENTS

We pretrained ResNet-50 (He et al., 2016) nested in U-Nets (Ronneberger et al., 2015) using the
combined segmentation losses of CrossEntropy and Dice (Jadon, 2020) along with Kullback-Leibler
divergence (Kullback & Leibler, 1951) serving as the consistency losses. The selection proportion
α we set to 50% after exponentially ramping down from 100% for the first 80 epochs. At the
same time, the weighting factor γ ramps up from 0 to 1 in parallel. We employed a seasonal data
augmentation strategy, where the data from a randomly selected season were fed to U-Nets in each
iteration. An Adam optimizer (Kingma & Ba, 2017) was used with a learning rate of .5 · 10−3. We
employed the ReduceLROnPlateau scheduler to cut in half the learning rate when the validation
loss is not decreasing over 30 consecutive epochs. We randomly split off 1% of the entire training
set as the validation set. The pretraining was implemented on 4 NVIDIA A100 GPUs running
approx. 13 hours for 100 epochs. When transferred to the DFC2020 dataset, pretrained ResNet-50
encoders were embedded into PSPNets (Zhao et al., 2017), fine-tuned with Adam and a learning
rate of .5 · 10−4 for 50 epochs. As reference, we also present the results of single-modal pretraining
(S1/S2) as well as multi-modal pretraining without sample selection, in which midF and lateF
denote middle and late fusion, respectively. Pretrained weights by DINO and MoCo were provided
by Wang et al. (2023). Results reported with error bars stem from 3 repeated runs of each setup.

Table 1: Transfer learning results on the DFC2020 dataset with S1 and S2 as inputs, respectively,
where “Fine-tuned” and “Frozen” indicate whether the encoder weights would be adjusted along
with decoder ones or not.

Modality Encoder Frozen Fine-tuned
Metrics OA AA mIoU OA AA mIoU

S1

Random 54.41±0.35 40.68±0.23 29.16±0.06 52.65±0.42 42.17±0.29 28.36±0.22
MoCo 60.88±0.41 47.46±0.52 34.25±0.27 60.31±0.40 44.98±0.66 31.80±0.46

single-modal (S1) 61.73±0.58 46.13±0.34 34.77±0.30 61.07±0.19 45.78±0.48 34.13±0.19
midF 62.08±0.73 45.01±0.40 34.64±0.48 61.24±0.44 45.44±0.84 33.86±0.16
lateF 61.09±0.11 45.77±0.29 34.15±0.14 62.19±0.49 47.43±0.41 34.58±0.48

CromSS-midF 61.66±0.41 45.07±0.28 34.38±0.02 62.32±1.01 47.19±0.84 35.17±0.63
CromSS-lateF 62.58±0.36 46.37±0.53 34.80±0.37 60.92±0.76 46.13±0.60 33.94±0.55

S2

random 56.42±0.49 45.12±0.18 31.50±0.14 58.68±0.77 46.03±0.43 33.56±0.28
DINO 64.82±0.22 48.83±0.08 37.81±0.08 63.64±0.72 49.92±1.33 36.95±0.55
MoCo 63.25±0.47 51.00±0.28 37.67±0.57 61.19±0.39 47.29±0.36 34.86±0.63

single-modal (S2) 66.66±0.19 53.24±0.21 40.88±0.07 67.11±0.22 53.14±0.69 41.06±0.24
midF 68.36±0.65 53.23±0.42 41.52±0.35 68.07±0.64 52.60±0.52 41.17±0.28
lateF 67.61±0.91 54.08±0.92 41.59±0.75 68.43±1.18 53.72±0.76 41.76±0.76

CromSS-midF 69.41±0.68 55.97±0.31 42.89±0.35 69.20±0.66 54.86±0.59 42.58±0.34
CromSS-lateF 66.61±1.20 54.23±1.06 41.12±0.11 69.10±0.29 54.86±0.42 42.55±0.36

As shown in Table 1, the proposed CromSS can improve the effectiveness of the pretrained encoders
in remote sensing image segmentation—in particular for S2 multi-spectral data. The improvement
for S1 radar data is less significant. We attribute this discrepancy to the different capabilities of two
modalities in the pretraining task, i.e., land cover classification in this work. The sample selection
in CromSS is still fundamentally based on its own confidence masks for each modality. S1, which
can be regarded as a weak modality in this case, can potentially take more advantages from S2 with
additional specific strategies. Furthermore, the middle fusion strategy showcases a larger margin
compared to late fusion, which indicates that the implicit data fusion via decoder weight sharing
can boost the learning across modalities to some extent. We can also observe some improvements
of single-modal pretraining with noisy labels compared to DINO and MoCo. These outcomes fur-
ther demonstrate the potential of using noisy labels in task-specific pretraining for segmentation
downstream tasks.
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5 CONCLUSIONS

With CromSS we introduce a pretraining strategy guided by noisy labels for large-scale remote
sensing image segmentation. CromSS exploits a cross-modal sample selection strategy to reduce the
adverse effects of label noise. We combine this approach with a consistency loss correlating models
each of which operates on a single modality, only. Transfer learning results on the DFC2020 dataset
demonstrate the effectiveness of the CromSS-pretrained ResNet-50 encoders. In future works, we
will explore the potential of CromSS for ViT pretraining such as in Masked-Image-Modelling as
well as on more kinds of noisy labels to test its robustness to different noise rates.
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