Liu, Chenying and Song, Hunsoo and Shreevastava, Anamika and Albrecht, Conrad M (2024) AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing. In: IEEE International Geoscience and Remote Sensing Symposium,. 2024 IGARSS, 2024-07-07, Athens.
PDF
3MB |
Abstract
Local climate zones (LCZs) established a standard classification system for regional climate studies. Existing LCZ-mapping is guided by human interaction with geographic information systems (GIS) or modelled from remote sensing (RS) data. GIS-based methods do not scale to large areas. However, RS-based methods leverage machine learning techniques to automatize LCZ classification from RS. Yet, RS-based methods require huge amounts of manual labels for training. We propose a novel LCZ mapping framework, termed AutoLCZ, to extract the LCZ classification features from high-resolution RS modalities. We study the definition of numerical rules designed to mimic LCZ definitions. Those rules model geometric and surface cover properties from LIDAR data. Correspondingly, we enable LCZ-classification from RS data in a GIS-based scheme. The proposed AutoLCZ method has potential to reduce the human labor to acquire accurate metadata. At the same time, AutoLCZ sheds light on the physical interpretability of RS-based methods. In a proof-of-concept for New York City (NYC) we leverage airborne LIDAR surveys to model 4 LCZ features to distinguish 10 LCZ types. The results indicate the potential of AutoLCZ as promising avenue for large-scale LCZ mapping from RS data.
Item URL in elib: | https://elib.dlr.de/204341/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||
Journal or Publication Title: | IEEE International Geoscience and Remote Sensing Symposium, | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Accepted | ||||||||||||||||||||
Keywords: | Local climate zone (LCZ), remote sensing (RS), Light Detection and Ranging (LiDAR), noisy labels (AutoGeoLabel), urban heat island and climate change (DeepLCZChange) | ||||||||||||||||||||
Event Title: | 2024 IGARSS | ||||||||||||||||||||
Event Location: | Athens | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Date: | 7 July 2024 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, D - urbanModel, L - Climate, Weather and Environment, R - Optical remote sensing | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||
Deposited On: | 27 May 2024 09:26 | ||||||||||||||||||||
Last Modified: | 06 Jun 2024 09:41 |
Repository Staff Only: item control page