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ABSTRACT

Local climate zones (LCZs) established a standard classifica-
tion system to categorize the landscape universe for improved
urban climate studies. Existing LCZ mapping is guided
by human interaction with geographic information systems
(GIS) or modelled from remote sensing (RS) data. GIS-based
methods do not scale to large areas. However, RS-based
methods leverage machine learning techniques to automatize
LCZ classification from RS. Yet, RS-based methods require
huge amounts of manual labels for training. We propose
a novel LCZ mapping framework, termed AutoLCZ, to ex-
tract the LCZ classification parameters from high-resolution
RS modalities. We study the definition of numerical rules
designed to mimic the LCZ definitions. Those rules model
geometric and surface cover parameters from LiDAR data.
Correspondingly, we enable LCZ classification from RS data
in a GIS-based scheme. The proposed AutoLCZ method has
potential to reduce the human labor to acquire accurate meta-
data. At the same time, AutoLCZ sheds light on the physical
interpretability of RS-based methods. In a proof-of-concept
for New York City (NYC) we leverage airborne LiDAR sur-
veys to model four LCZ parameters to distinguish eight LCZ
types. The results indicate the potential of AutoLCZ as a
promising avenue for large-scale LCZ mapping from RS
data.

Index Terms— Local climate zone (LCZ), remote sens-
ing (RS), Light Detection and Ranging (LiDAR), noisy la-
bels (AutoGeoLabel), urban heat island and climate change
(DeepLCZChange)
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1. INTRODUCTION

The concept of Local Climate Zones (LCZs) was established
by Stewart and Oke to facilitate metadata communication in
urban temperature observations and heat island studies [1].
The LCZ classification system defines 17 classes, including
10 built types and 7 land cover types to characterize con-
structed sites and natural scenes. These classes are locally
defined based on climate-relevant surface properties, encom-
passing surface cover types, structures, materials, and human
activities. The correlation between local climate conditions
and spatial physical factors, such as building height and spac-
ing, pervious surface fraction, tree density, and soil wetness,
has been substantiated by subsequent researches [3]. This ev-
idence supports the LCZ partitions, establishing it as a useful
tool widely applied in various urban climate related studies
[4, 5, 6].

In recent years, many attempts have been made to gener-
ate more accurate LCZ maps. The existing LCZ classification
methods can be roughly grouped into three categories, that is,
geographic information system (GIS)-based, remote sensing
(RS)-based, and combined methods [7]. GIS-based methods
follow the instructions proposed in [1], choosing and collect-
ing appropriate site metadata to quantify the defined parame-
ters for LCZ classification. These methods have a good phys-
ical interpretability, yet require high-quality data to model ac-
curate LCZ parameters to guarantee the reliability of derived
results [8]. Such data are hard to obtain especially for large-
scale studies. Besides, metadata sometimes cannot be per-
fectly matched with given value ranges due to the heterogene-
ity of local surface structures in real scenarios. Subclasses are
often introduced to encompass these exceptions in the spe-
cific study area. On the contrary, RS-based methods utilize
machine learning techniques to classify LCZs from remote
sensing imagery in a supervised fashion, promising in pro-
ducing large-scale LCZ maps. These methods heavily rely
on training samples to explore the projection from RS image
features to LCZs, which ignores underlining physical charac-
teristics [9]. Accuracy assessment is necessary to evaluate the
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Table 1. LCZ parameters and corresponding parameter ranges to distinguish 10 built types. The geometric and surface cover
parameters carry no dimension, except for the height of roughness elements (in meters). All values are representative of the
local scale. The parameters considered in this work are highlighted by a blue background. Reference [1] contains details.

Geometric and surface cover parameters Thermal, radiative, and metabolic parameters
No. LCZ Built type SVFa ARb BSFc ISFd PSFe HREf TRCg SADh SALi AHOj

1 Compact high-rise 0.2-0.4 >2 40-60 40-60 <10 >25 8 1,500-1,800 0.10-0.20 50-300
2 Compact midrise 0.3-0.6 0.75-2 40-70 30-50 <20 10-25 6-7 1,500-2,200 0.10-0.20 <75
3 Compact low-rise 0.2-0.6 0.75-1.5 40-70 20-50 <30 3-10 6 1,200-1,800 0.10-0.20 <75
4 Open high-rise 0.5-0.7 0.75-1.25 20-40 30-40 30-40 >25 7-8 1,400-1,800 0.12-0.25 <50
5 Open midrise 0.5-0.8 0.3-0.75 20-40 30-50 20-40 10-25 5-6 1,400-2,000 0.12-0.25 <25
6 Open low-rise 0.6-0.9 0.3-0.75 20-40 20-50 30-60 3-10 5-6 1,200-1,800 0.12-0.25 <25
7 Lightweight low-rise 0.2-0.5 1-2 60-90 <20 <30 2-4 4-5 800-1,500 0.15-0.35 <35
8 Large low-rise >0.7 0.1-0.3 30-50 40-50 <20 3-10 5 1,200-1,800 0.15-0.25 <50
9 Sparsely built >0.8 0.1-0.25 10-20 <20 60-80 3-10 5-6 1,000-1,800 0.12-0.25 <10
10 Heavy industry 0.6-0.9 0.2-0.5 20-30 20-40 40-50 5-15 5-6 1,000-2,500 0.12-0.20 >300

aSky View Factor (SVF): ratio of the amount of sky hemisphere visible from ground level to that of an unobstructed hemisphere; bAspect ratio (AR): mean height-to-width ratio of street canyons (LCZs 1-7), and building spacing (LCZs 8-10);
cBuilding Surface Fraction (BSF): ratio of building area to total area; d Impervious Surface Fraction (ISF): ratio of impervious area to total area; ePervious Surface Fraction (PSF): ratio of pervious area to total area;

f Height of Roughness Elements (HRE): geometric average of building heights; gTerrain Roughness Class (TRC): classification of effective terrain roughness for city and country landscapes;
hSurface ADmittance (SAD); iSurface ALbedo (SAL); jAnthropogenic Heat Output (AHO)

(a) sampling areas (b) optical (c) elevation (m) (d) ground truth (e) noisy labels

Fig. 1. Overview on the data of our study: (a) sampling areas in NYC boroughs Manhattan, Queens, Bronx, and Brooklyn,
where each point represents a 0.642 km2 squared region. Illustrations of a built type compact low-rise (LCZ 3) from (b) the
optical view, (c) the 2D mean elevation statistics rasterized from LiDAR data, (d) the ground truth land cover mask, and (e) the
noisy land cover mask derived from LiDAR statistics (cf. [2]).

learned projections. In this case, training labels are usually
collected by human visually inspecting local scenes. This ap-
proach easily leads to misclassified labels partly due to the
vague definitions of LCZ classes [10]. Combined methods
aim to couple the two kinds of methods by serialization [11]
or constructing compound feature sets [12], which integrate
not only advantages but also disadvantages.

In this work, we propose a new combined LCZ mapping
framework called AutoLCZ, which learns the projections from
the estimated LCZ parameters with the aid of rules that scal-
ably operate on high-resolution, RS modalities, rather than
from original RS features. Among others, large-scale air-
borne LiDAR surveys have been made available in recent
years. LiDAR (Light Detection and Ranging) generates 3D
data points from laser pulses bouncing back from the Earth’s
surface to measure ranges/distances, which is the major data
source to map elevation and topography. The rich structural
information provided by LiDAR data points is also useful
in uncovering land cover characteristics such as trees, roads,
buildings, etc. [2]. These aspects render LiDAR surveys suit-
able for modeling the geometric and land cover parameters
for LCZ classification. We explore our approach in a proof-
of-concept for the City of New York (NYC), where we only
consider the eight built types out of ten excluding LCZs 7 and

9, given the fact that NYC is a highly urbanized area without
lightweight low-rise or sparsely built areas. As illustrated in
Table 1, we model four geometric and surface cover param-
eters in this work as a first step to test the feasibility of the
proposed framework.

In the following, we will first give a brief introduction of
the study area along with related data in Section 2. Then,
Section 3 presents the details of AutoLCZ, followed by the
experimental results in Section 4, and conclusions for future
lines in Section 5.

2. STUDY AREA & DATA

We selected NYC as our study area for its coverage by vari-
ous data modalities, such as: LiDAR data, high and moderate
resolution optical data, land cover masks, and LCZ masks.
They are open sourced thanks to the government’s efforts of
boosting data sharing1. As illustrated in Fig. 1a, we sam-
pled 2390 regions of size 0.642 km2 across the study area.
We subsequently cropped them into 34,920 small patches of
100m×100m after data cleansing. The optical image sample
in Fig. 1b corresponds to a National Agriculture Imaging Pro-
gram’s (NAIP) orthophoto. The majority of data used in this
1e.g., available at https://opendata.cityofnewyork.us
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work derives from LiDAR statistics and the ground truth land
cover masks.

LiDAR surveys: Point cloud LiDAR data were originally
acquired in 2017 with an approximate density of 10 points
per square meter. We converted the raw 3D point clouds into
raster layers using a 1.5m diameter sliding circle with a grid
size of 0.5m to accumulate statistics such as minimum, maxi-
mum, mean, and standard deviation of each attribute. In LCZ
parameter modeling, we mainly utilize the elevation-mean
statistics as in Fig. 1c.

Land cover masks: NYC agencies made the 8-class land
cover masks publicly available with the aid of the 2017 NYC
LiDAR data and additional geospatial surveys like building
footprints, and overhead imagery. Such detailed land use in-
formation is crucial for LCZ mapping, yet rare to come by and
costly to process. As an alternative, we explore the potential
of noisy land cover masks as in Fig. 1e, which are derived
from LiDAR statistics by AutoGeoLabel [2] towards further
advancing automation of LCZ mapping. Only three specific
classes, including trees, buildings, and roads, are delineated in
this way. The rest remains unlabeled (white in Fig. 1e, back-
ground). The effectiveness of these rough labels have been
verified in real applications such as urban forest monitoring
[13]. We will show in the following that these easy-to-come-
by labels, though less sufficient in describing the surface than
ground truth masks, are still useful in LCZ mapping.

3. METHODOLOGY

3.1. LCZ Parameter Modeling

Let D = {(h(i),y(i), z(i))| i = 1, . . . , N} = {(h,y, z)}N
denote the dataset consisting of N = 34, 920 image patches
with LiDAR mean-elevation statistics h(i) ∈ Rn×n and land
cover masks y(i) ∈ Ln×n labelled by LCZ classes z(i) ∈ Z,
where R is the set of real numbers, L = {1, · · · , L} denotes
the category set of land cover masks, Z = {1, · · · , Z} entails
the class definitions of LCZ, and n represents the linear size
of patches with n2 pixels—the unit size for LCZ mapping.
For the NYC dataset, we have L = 8 as in Fig. 1, Z = 10,
n = 200 with the spatial resolution of z(i) being 100m and
that of h(i) and y(i) being 0.5m. Both ground truth land cover
masks y(i) and noisy land cover masks y(i) = y(i)

(
h(i)

)
serve as label data for our experiments in Section 4.

The three surface fraction factors SF ∈ {BSF, ISF,PSF}
we derive from y(i) as follows:

SF(i) =
1

n2

∑
l∈LSF

n∑
p,q=1

δ
(
y(i)pq − l

)
(1)

where δ(x) = 1 if x = 0, otherwise 0. l is the target class in-
dex representing: building, impervious, and pervious surfaces
for BSF, ISF, and PSF, respectively. For the NYC dataset:
LBSF = {5}, LISF = {6, 7}, and LPSF = {1, 2, 3}, according

to Fig. 1. The Height of Roughness Elements (HRE) is esti-
mated by the geometric mean of heights over building pixels
in h(i), that is:

logHRE(i) =
1

m(i)

n∑
p,q=1

δ
(
y(i)pq − 5

)
log h(i)

pq

m(i) =

n∑
p,q=1

δ
(
y(i)pq − 5

)
(2)

for the ith image patch such that HRE = exp⟨logh⟩. The
symbol ⟨·⟩ denotes arithmetic averaging over building areas
computing the logarithm of the mean-elevation statistics h.

3.2. LCZ Classification

Since the four LCZ parameters BSF, ISF, PSF, and HRE are
estimated following the initial definition of the LCZs [3], a
naive approach to obtain LCZ classification results applies
the thresholds listed in Table 1. However, the estimation bias
caused by data noise and inaccurate approximation of rules
likely leads to unsatisfying results. Thus, we recompute the
thresholds in a data-driven fashion from the LCZ labels z.
Our approach is based on the ground truth land cover masks y
and the mean-elevation data h. Specifically, within each class
L, we calculate the mean µ and standard deviation σ for each
of the SFs and HRE employing Eqs. (1) and (2). Following
the assumption that about 95% of Gaussian noise–distributed
values fall into the range of ∆ = [µ − 2σ, µ + 2σ] [14], we
set the lower and upper bounds for each LCZ parameter as
µ− 2σ and µ+ 2σ, respectively.

4. EXPERIMENTS

4.1. Estimated LCZ Parameter Thresholds

For the SFs and HRE parameters, Table 2 summarizes the
estimated thresholds as per Section 3.2 along with their defi-
nition in [1]. We report the results of 8 classes due to the ab-
sence of classes 7 and 9 from the NYC dataset. According to
Table 2, most of the LCZ definitions deviate from the statis-
tics such that the estimated thresholds exhibit broader value
ranges. Besides the limits of assuming Gaussians distribu-
tions for the SFs and HRE parameters per LCZ class, noise
in the LCZ labels restricts the overall accuracy due to visual
interpretation by human inspection.

4.2. Rule-Based LCZ Parameters

For LCZ mapping z = z(x) with parameter vector x(y,h) =
[BSF(y), ISF(y),PSF(y),HRE(y,h)]T such that z = z(y,h),
we apply the two sets of thresholds from Table 2 to the SFs
and HRE: one with ground truth land cover masks y, and
one with their noisy counterparts y = y(h) from [2]2. Since
2In case of noisy labels: BSF, ISF, and PSF utilize the Buildings, Roads, and
others/background classes for LSF, respectively.
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(a) optical image (b) elevation (m) (c) land cover (d) OSM (e) street view

Fig. 2. An example of a potentially incorrectly annotated LCZ 4 patch with corresponding (d) OpenStreetMap data and (e)
Google street view photo. The red arrow in (d) points towards to the direction from which the street view photo was taken.

Table 2. Intervals ∆(ẑ)
j of parameters xj to predict LCZs ẑ:

(a) by definition (black, min–max or <max or >min), and (b)
by estimated thresholds from LCZ labels z and ground truth
land cover masks y (blue, ∆=[min, max]).

ẑ = LCZ x1 = BSF x2 = ISF x3 = PSF x4 = HRE

0.4-0.6 0.4-0.6 <0.1 >251 [0.30, 0.65] [0.25, 0.55] [0.00, 0.26] [18.98, 69.14]
0.4-0.7 0.3-0.5 <0.2 10-252 [0.18, 0.50] [0.31, 0.62] [0.04, 0.32] [4.81, 24.25]
0.4-0.7 0.2-0.5 <0.3 3-103 [0.22, 0.42] [0.35, 0.58] [0.09, 0.32] [4.20, 17.72]
0.2-0.4 0.3-0.4 0.3-0.4 >254 [0.05, 0.34] [0.21, 0.58] [0.17, 0.61] [2.20, 29.78]
0.2-0.4 0.3-0.5 0.2-0.4 10-255 [0.11, 0.37] [0.22, 0.53] [0.21, 0.54] [6.44, 25.09]
0.2-0.4 0.2-0.5 0.3-0.6 3-106 [0.04, 0.28] [0.20, 0.56] [0.23, 0.68] [0.09, 18.11]
0.3-0.5 0.4-0.5 <0.2 3-108 [0.04, 0.59] [0.31, 0.81] [0.00, 0.27] [3.25, 12.21]
0.2-0.3 0.2-0.4 0.4-0.5 5-1510 [0.03, 0.49] [0.32, 0.81] [0.00, 0.30] [2.59, 14.16]

we restrict our study to four parameters characterizing eight
LCZs, we recast the LCZ–classification as a multi-label task:
Ẑ(y,h) =

{
ẑ : xj(y,h) ∈ ∆

(ẑ)
j , j = 1 . . . 4

}
. Our perfor-

mance evaluation is based on whether or not Ẑ(y,h) covers
the ground truth, z ∈ Ẑ or z /∈ Ẑ. The class-wise results (z
fixed) are summarized in Table 3. Two insights we extract:
• Data-adjusted intervals ∆ for the SFs and HRE signifi-

cantly improve the classification performance, which sug-
gests that the projection between parameters and LCZs re-
quires further inspection and modification—in particular
for LCZs 4, 8, and 10.

• Despite the application of noisy land cover masks leading
to degraded classification results, the low-cost label gener-
ation combined with the improvement gained by estimat-
ing ∆ from a small subset of accurate labels z indicates
the potential of our approach for efficient LCZ mapping.

4.3. LCZ Misclassified vs. Mislabeled

As Table 3 demonstrates, the accuracy to predict LCZ classes
using pre-defined thresholds may be quite low, cf. LCZs 4 and
10. To shed light on potential root causes, we showcase an
example of LCZ 4 along with the street view photo retrieved

Table 3. Accuracy assessment (in percent) of LCZ mapping
results obtained by AutoLCZ with two sets of thresholds from
Table 2 employing ground truth land cover masks and noisy
land cover masks, respectively.

Using GT labels Using noisy labels

z = LCZ Given
thresholds

Estimated
thresholds

Given
thresholds

Estimated
thresholds

1 43.02 81.12 (+38.10) 56.73 69.13 (+12.40)
2 48.58 54.78 (+ 6.20) 69.11 61.30 (- 7.81)
3 30.56 44.22 (+13.66) 11.07 30.56 (+19.49)
4 8.54 56.66 (+48.12) 7.35 59.36 (+52.01)
5 34.05 50.48 (+16.43) 39.52 40.00 (+ 0.48)
6 60.81 72.42 (+11.61) 21.18 35.36 (+14.18)
8 26.84 82.89 (+56.05) 20.26 86.05 (+65.79)

10 1.41 82.13 (+80.72) 6.11 83.23 (+77.12)
All (OA) 44.85 59.11 (+14.26) 38.91 48.56 (+ 9.65)

from Google in Fig. 2. The street view indicates a three-story
building to the left. As a rough proxy we assume 3 meters
per story. Hence, the building raises up to about 10m above
ground. This height is obviously below the HRE lower bound
value of 25m for LCZ 4. The corresponding patch i is likely
mislabeled by the (human) annotation process. Such bias in
data defining ∆ can lead to low LCZ classification accuracy
for our data-driven approach.

5. CONCLUSIONS

We proposed the AutoLCZ framework for boosting the au-
tomation of LCZ mapping with the aid of rules that scalably
operate on LiDAR data to model LCZ parameters. We applied
a proof-of-concept experiment for New York City on four
LCZ parameters, namely three surface fraction measures and
the Roughness Element (of height). The results indicate that
AutoLCZ is promising in not only large-scale LCZ mapping,
but also it proofs useful in the correction and quality control of
manually annotated LCZ labels. Our initial findings motivate
to further improve the accuracy and efficiency of AutoLCZ by
refining the set of rules for LCZ parameter estimation. Ex-
ploring more efficient classification strategies with the aid of
machine learning techniques is a natural follow-up to our ex-
periments. Integration of thermal modalities (e.g., band 10
of the Landsat 8 satellite) may provide an additional boost in
performance to the AutoLCZ methodology.
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