Liu, Chenying und Song, Hunsoo und Shreevastava, Anamika und Albrecht, Conrad M (2024) AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing. In: 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024. 2024 IGARSS, 2024-07-07, Athens. doi: 10.1109/igarss53475.2024.10641645. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
PDF
3MB |
Kurzfassung
Local climate zones (LCZs) established a standard classification system for regional climate studies. Existing LCZ-mapping is guided by human interaction with geographic information systems (GIS) or modelled from remote sensing (RS) data. GIS-based methods do not scale to large areas. However, RS-based methods leverage machine learning techniques to automatize LCZ classification from RS. Yet, RS-based methods require huge amounts of manual labels for training. We propose a novel LCZ mapping framework, termed AutoLCZ, to extract the LCZ classification features from high-resolution RS modalities. We study the definition of numerical rules designed to mimic LCZ definitions. Those rules model geometric and surface cover properties from LIDAR data. Correspondingly, we enable LCZ-classification from RS data in a GIS-based scheme. The proposed AutoLCZ method has potential to reduce the human labor to acquire accurate metadata. At the same time, AutoLCZ sheds light on the physical interpretability of RS-based methods. In a proof-of-concept for New York City (NYC) we leverage airborne LIDAR surveys to model 4 LCZ features to distinguish 10 LCZ types. The results indicate the potential of AutoLCZ as promising avenue for large-scale LCZ mapping from RS data.
elib-URL des Eintrags: | https://elib.dlr.de/204341/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||
Erschienen in: | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/igarss53475.2024.10641645 | ||||||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||||||
ISBN: | 979-8-3503-6032-5 | ||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||
Stichwörter: | Local climate zone (LCZ), remote sensing (RS), Light Detection and Ranging (LiDAR), noisy labels (AutoGeoLabel), urban heat island and climate change (DeepLCZChange) | ||||||||||||||||||||
Veranstaltungstitel: | 2024 IGARSS | ||||||||||||||||||||
Veranstaltungsort: | Athens | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsdatum: | 7 Juli 2024 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, D - urbanModel, L - Klima, Wetter und Umwelt, R - Optische Fernerkundung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
Hinterlegt am: | 27 Mai 2024 09:26 | ||||||||||||||||||||
Letzte Änderung: | 31 Okt 2024 08:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags