Liu, Chenying und Song, Hunsoo und Shreevastava, Anamika und Albrecht, Conrad M (2024) AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing. In: 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024, Seiten 2023-2027. 2024 IGARSS, 2024-07-07, Athens. doi: 10.1109/igarss53475.2024.10641645. ISBN 979-8-3503-6032-5. ISSN 2153-7003.
|
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10641645
Kurzfassung
Local climate zones (LCZs) established a standard classification system for regional climate studies. Existing LCZ-mapping is guided by human interaction with geographic information systems (GIS) or modelled from remote sensing (RS) data. GIS-based methods do not scale to large areas. However, RS-based methods leverage machine learning techniques to automatize LCZ classification from RS. Yet, RS-based methods require huge amounts of manual labels for training. We propose a novel LCZ mapping framework, termed AutoLCZ, to extract the LCZ classification features from high-resolution RS modalities. We study the definition of numerical rules designed to mimic LCZ definitions. Those rules model geometric and surface cover properties from LIDAR data. Correspondingly, we enable LCZ-classification from RS data in a GIS-based scheme. The proposed AutoLCZ method has potential to reduce the human labor to acquire accurate metadata. At the same time, AutoLCZ sheds light on the physical interpretability of RS-based methods. In a proof-of-concept for New York City (NYC) we leverage airborne LIDAR surveys to model 4 LCZ features to distinguish 10 LCZ types. The results indicate the potential of AutoLCZ as promising avenue for large-scale LCZ mapping from RS data.
| elib-URL des Eintrags: | https://elib.dlr.de/204341/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | AutoLCZ: Towards Automatized Local Climate Zone Mapping from Rule-Based Remote Sensing | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 2024 | ||||||||||||||||||||
| Erschienen in: | 2024 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2024 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||||||
| DOI: | 10.1109/igarss53475.2024.10641645 | ||||||||||||||||||||
| Seitenbereich: | Seiten 2023-2027 | ||||||||||||||||||||
| ISSN: | 2153-7003 | ||||||||||||||||||||
| ISBN: | 979-8-3503-6032-5 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Local climate zone (LCZ), remote sensing (RS), Light Detection and Ranging (LiDAR), noisy labels (AutoGeoLabel), urban heat island and climate change (DeepLCZChange) | ||||||||||||||||||||
| Veranstaltungstitel: | 2024 IGARSS | ||||||||||||||||||||
| Veranstaltungsort: | Athens | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsdatum: | 7 Juli 2024 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, D - urbanModel, R - Optische Fernerkundung | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
| Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
| Hinterlegt am: | 27 Mai 2024 09:26 | ||||||||||||||||||||
| Letzte Änderung: | 01 Okt 2025 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags