Brucke, Karoline and Schmitz, Simon and Köglmayr, Daniel and Baur, Sebastian and Räth, Christoph and Ansari, Esmail and Klement, Peter (2024) Benchmarking Reservoir Computing for Residential Energy Demand Forecasting. Energy and Buildings, 314 (114236). Elsevier. doi: 10.1016/j.enbuild.2024.114236. ISSN 0378-7788.
![]() |
PDF
- Published version
1MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0378778824003529?via%3Dihub
Abstract
In the energy sector, accurate demand forecasts are vital but often limited by the available computational power. Reservoir computing (RC) or echo-state networks excel in chaotic time series prediction, with lower computational requirements compared to other recurrent network based methods like LSTMs. Next-generation reservoir computing (NG-RC) is a newer, more efficient variant of classical RC originating from nonlinear vector autoregression and therefore missing the randomness of classical RC. In our study, we evaluate RC and NG-RC for day-ahead energy demand predictions on four data sets and compare it to LSTMs and a naive persistence approach. We find that NG-RC outperforms all other methods when considering the root mean squared error on all data sets but struggles with very small or zero demands. Additionally, it offers a very computationally effective hyperparameter optimization and excels in replicating the inherent volatility and the erratic behavior of energy demands.
Item URL in elib: | https://elib.dlr.de/204259/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Benchmarking Reservoir Computing for Residential Energy Demand Forecasting | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 1 July 2024 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Energy and Buildings | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 314 | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.enbuild.2024.114236 | ||||||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0378-7788 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Reservoir computing, Next generation reservoir computing, Recurrent network architectures, Energy demand forecasting, LSTM | ||||||||||||||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||||||||||||||
HGF - Program: | Energy System Design | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Digitalization and System Technology | ||||||||||||||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||||||||||||||
DLR - Program: | E SY - Energy System Technology and Analysis | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | E - Energy System Technology, R - Artificial Intelligence, R - Machine Learning | ||||||||||||||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute for AI Safety and Security Institute of Networked Energy Systems > Energy System Technology Institute of Software Technology | ||||||||||||||||||||||||||||||||
Deposited By: | Brucke, Karoline | ||||||||||||||||||||||||||||||||
Deposited On: | 20 May 2024 11:03 | ||||||||||||||||||||||||||||||||
Last Modified: | 12 Jun 2024 07:03 |
Repository Staff Only: item control page