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In the energy sector, accurate demand forecasts are vital but often limited by the available computational power. 
Reservoir computing (RC) or echo-state networks excel in chaotic time series prediction, with lower computa-

tional requirements compared to other recurrent network based methods like LSTMs. Next-generation reservoir 
computing (NG-RC) is a newer, more efficient variant of classical RC originating from nonlinear vector autore-

gression and therefore missing the randomness of classical RC. In our study, we evaluate RC and NG-RC for 
day-ahead energy demand predictions on four data sets and compare it to LSTMs and a naive persistence ap-

proach. We find that NG-RC outperforms all other methods when considering the root mean squared error on all 
data sets but struggles with very small or zero demands. Additionally, it offers a very computationally effective 
hyperparameter optimization and excels in replicating the inherent volatility and the erratic behavior of energy 
demands.
1. Introduction

High quality demand predictions are crucial in energy management 
to e.g. make full use of flexibility potentials or enable demand response 
[1,2]. Especially, the heat sector offers high flexibility potential with 
its inherent storage properties due to the inertia of heat systems [3,4]. 
Managing the electricity loads on the other hand can also provide flexi-

bility by applying prediction based demand side management like load 
shifting etc. [5,6]. Especially, the residential sector is of importance due 
to its impact in the distribution grids and its high but currently unused 
flexibility potential [7].

Typical approaches to carry out demand predictions in the energy 
research are divided into artificial intelligence (AI) based methods and 
non-AI based methods [8]. Non-AI based methods comprise mainly of 
the generation of standardized load profiles [9], statistical approaches 
like ARIMA [10] or naive forecasts such as persistence approaches. AI 
based approaches mainly focus on the use of Support Vector Regres-

sion (SVR) [11] and artificial neural networks (ANNs) such as Long 
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Short Term Memory (LSTM) Networks [12,13]. Generally, ANNs and 
especially LSTMs outperform most other techniques and are often con-

sidered state-of-the-art for high quality demand prediction [14]. But 
they certainly have downsides regarding the high computational power 
and time needed in training and hyperparameter optimization as well 
as extensive prior feature engineering effort and the high amount of 
required training data.

Reservoir Computing (RC) [15,16] has been proven to perform out-

standingly well in the prediction of (chaotic) time series especially on 
theoretical data sets like Lorenz oscillator systems [17]. It can be under-

stood as a generalized form of echo-state networks (ESN) and sometimes 
these terms are used equivalently. In Reservoir Computing, only the out-

put layer is trained while the so-called reservoir is kept fix. Therefore, 
the comparably low training effort makes RC especially appealing for 
any real world applications where large scale computation hardware 
might not be available [18]. Additionally, this type of recurrent neu-

ral network is known to perform well even at small amounts of training 
data. Scientific publications show good results in the prediction of real 
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world data like stock prices [19], wind speeds [20] or solar radiation 
[21]. Physical reservoirs are also used as in [22] where the authors pre-

dict household energy demands with a spintronic physical reservoir. 
Nevertheless, the research on the application of RC or any type of echo 
state networks (ESN) to energy demands is not extensive:

In [23], [24] and [25] the authors use ESN to carry out a 24 h day-

ahead load prediction at an hourly resolution based on utility company 
data. Commercial buildings are the focus of [26] and [27] develop-

ing load predictions using RC while other publications use household 
data when applying ESN to load forecasting like [28], [29] and [18]. 
Multiple publications combine classical ESN or RC with methods to in-

telligently preprocess the data like in [30] where the authors apply 
wavelet transformation and neural reconstruction or like [31] where 
principal component analysis is used to reduce dimensionality of the 
load forecast. Another research focus applying RC methods to load 
forecasting problems is the hyperparameter optimization of the ESN 
method. Particle swarm optimization is used for that task in [32] while 
genetic algorithms are applied in [31] and [29]. Most of the publica-

tions compare multiple RC approaches and variations against each other 
[27,33,29]. Only a few compare them to other types of recurrent neural 
networks like LSTMs as well [28,22]. Even fewer publications consider 
multiple data sets or different types of data: In [34] the authors use 
deep ESN to predict energy consumption as well as wind power genera-

tion and in [35], high order fuzzy cognitive maps are used as reservoir 
computing models to predict solar energy as well as load. While there 
are first applications of RC for probabilistic load forecasting, like the 
authors show in [36] by coupling the ESN with multiple methods of un-

certainty, we focus on determining point forecasts in this work. In [37], 
the authors use ESN to predict the heating water temperature in the 
heat exchange station controller but to the best of our knowledge, RC 
has not yet been applied to (space) heat demands directly.

Recently, a new type of RC called Next-Generation Reservoir Comput-

ing (NG-RC) has been introduced [38]. It is characterized by the lack of 
randomness, the smaller number of tunable hyperparameters, and the 
potential computational speedup compared to classical reservoir com-

puting. In addition to these operational advantages, it has been shown 
in several publications that NG-RC requires significantly less training 
data than the already barely data-hungry classical reservoir computing 
[38–40], making NG-RC a highly efficient method for predicting time 
series data. So far, however, the application examples of NG-RC related 
publications focus on dynamical model systems, rather than real system 
data. To the best of our knowledge, the architecture has not yet been 
applied in the literature to predict energy demands of any kind.

In this work, we want to demonstrate and evaluate the application 
of RC and NG-RC to four different energy demand data sets from the res-

idential sector. For this purpose, we firstly conduct the RC and NG-RC 
based prediction of space heating demands based on simulated space 
heat demand data of 5 years for a whole residential district. Secondly, 
we apply both methods to three different sets of measured residential 
electric loads of two years provided by the EMSIG data set [41]. Thirdly, 
we investigate the sensitivity of RC and NG-RC to the amount of avail-

able training data since RC-based methods are known for delivering 
high quality results even at very small training sets. This investiga-

tion is done for all four data sets. All RC-based results are compared 
to the performance of a state-of-the-art LSTM with respect to a selected 
set of evaluation metrics. Finally, we benchmark everything against a 
naive persistence forecasts. Doing so, we can also conclude findings re-

garding the behavior of both approaches with respect to the type of 
data to be predicted. Generally, energy demand predictions are divided 
into very short term, short term, medium term and long term with respec-

tive cut off forecast horizons of one day, two weeks and three years 
[42]. Especially, the 24 h-day-ahead forecast is of importance in en-

ergy management and therefore considered in this work [43,44]. The 
data granularity of all data sets equals to 15 min which concludes to a 
2

prediction horizon of 96 time steps for 24 h, respectively.
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The main research contributions of this paper are summarized as 
follows:

• First application of NG-RC on energy demand data

• Comparison between NG-RC, standard RC and state-of-the-art 
LSTMs on 4 independent energy demand data sets representing 
single households or whole districts

• The sensitivity of all methods to the amount of available training 
data is examined on all data sets

In the following, we start by describing all four used data sets in Sec-

tion 2. Afterwards, the used methodology is explained in Section 3 by 
briefly describing LSTMs in Section 3.2, RC in Section 3.3, NG-RC in 
Section 3.4 and as well as the later used error measures to evaluate the 
results in Section 3.5. Thereafter, results are presented and discussed as 
we will comparatively evaluate the prediction results of the two reser-

voir computing techniques in Section 4. We conclude with a summary 
and outlook in Section 5.

2. Data

2.1. Simulated space heat demand data

The historical space heat demand profiles were simulated using the 
software QuaSi [45,46]. The buildings under study were calibrated for a 
standard weather profile applying simplified cubatures and determining 
of the building material properties, in order to comply with the annual 
space heat demand estimations according to the energy performance 
certificates of the buildings following DIN 4108 [47]. QuaSi simulates 
the buildings energetic behavior and thereby can create hourly or 15-

minutes load profiles for space heating using a generic thermal building 
model based on EnergyPlus [48]. These calibrated models in QuaSi 
were then applied to generate the historical space heat demand pro-

files using the historical hourly weather data published by DWD [49]

from 2017 to 2021 for the location of Bremen, Germany. The few 
sporadic missing weather data were closed utilizing interpolation tech-

niques based on reasonable assumptions. As QuaSi can only process the 
weather data in TRY-format, the historical weather data were hence 
mapped to this format. The underlying building model represents a 
small residential district containing four apartment buildings with 108 
living units and 6963 square meters of net living space.

2.2. Measured electricity demands based on the EMSIG data set

As measured electricity demands, the EMSIG data set is used in this 
work [41]. The data set represents energy data recorded by decen-

tralized household energy management systems (EMS) from the DACH 
region with a granularity of 15 min. Ten different EMS are available and 
in this work, EMS 3, 4 and 5 are used to evaluate the different prediction 
methods due to their high data quality and differing characteristics. The 
period of time used in this work is from January 1, 2019, until Decem-

ber 31, 2020. The data sets represent one household each. The column

_sum_consumption_active_power is taken for the prediction as it 
represents the sum of active power of the electricity consumption of 
the EMS. Past data is taken into account as input feature of the models 
while the future demands serve as output. Since every EMS represents 
a different building, individual models are trained on each of the data 
sets to carry out the predictions. This holds true for all prediction meth-

ods applied. A collection and usage of weather data as an input feature 
for the predictions is not applicable for the EMSIG data set since the ex-

act locations of the buildings are not published. Detailed information 
regarding the properties of the measured households is not published 
in [41]. However, Table 1 shows selected characteristics of the 3 EMS 
data sets. Note, that the household that corresponds to EMS4 only has 
half the annual demand and peak load compared to EMS3 and EMS5. 
This is likely due to a smaller number of people living in the respective 

household.
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Table 1

Selected characteristics of the data sets EMS3, EMS4 and EMS5 for the period 
of time from January 1, 2019, until December 31, 2020. All data sets represent 
individual households.

EMS3 EMS4 EMS5

Max load [kW] 11.18 5.40 9.23

Mean load [kW] 0.73 0.34 0.79

Mean annual demand [kWh] 6307.71 2971.93 6894.36

3. Methodology

In total, four different methodologies are applied to the demand 
forecasting problem in this work. They include: A persistence forecast 
described in Section 3.1 as benchmark, state-of-the-art LSTM networks 
explained in Section 3.2 and classical RC as well as NG-RC which are 
briefly introduced in the Sections 3.3 and Section 3.4.

3.1. Persistence forecast

For the persistence forecast, past data is used to predict future de-

mands. Since the data sets all have a granularity of 15 min and the 
forecast horizon is set to 24 hours, one prediction comprises 96 values. 
The following relationship applies to the conducted persistence predic-

tion:

𝑦t = 𝑦t−96 (1)

This operation is carried out for all 96 time steps in one prediction 
while 𝑦t represents the predicted value at time step 𝑡 and 𝑦t is the true 
or measured value at time step 𝑡.

3.2. Long-short-term-memory neural networks

A Long Short-Term Memory (LSTM) neural network is a type of 
recurrent neural network (RNN) introduced by Hochreiter and Schmid-

huber which is particularly well suited for sequential data since the 
method overcomes the vanishing gradient problem in traditional RNNs 
[50]. For this purpose, LSTMs use memory cells equipped with three 
gates - input, output, and forget - to store and access information 
over extended periods of time. The gates selectively retain and dis-

card information to handle long-term dependencies in sequential data. 
A schematic representation of the LSTM method is shown in the upper 
graph in Fig. 1. In comparison to RC and NG-RC not only the output 
layer but the whole LSTM network including all its trainable param-

eters is optimized during training. A simplified representation of an 
individual LSTM cell including its inputs and outputs is shown at the 
bottom of the respective graph. LSTMs have been successful in modeling 
and forecasting sequential data and are often considered state-of-the-art 
methodology for many applications of time series prediction. To model 
the LSTM networks, python and the respective tensorflow and Keras

modules are used in this work [51,52].

3.3. Reservoir computing

In this work, we use a basic setup for our reservoir computing al-

gorithm. A schematic representation of reservoir computing is shown 
in the middle graph of Fig. 1. The reservoir 𝐴 is a sparse random net-

work of size 𝑛 with Erdős–Rényi connectivity and randomly assigned 
connection strengths with average node degree 𝜅 and spectral radius 𝜌. 
The input coupler 𝐖in is a sparse random matrix with elements in [-1, 
1], where each reservoir node is connected to only one element of the 
input. Using tanh as activation function the reservoir state 𝒓(𝑡) can be 
advanced in time by one time step Δ𝑡 using the previous reservoir state 
and the input data 𝒙(𝑡)( )
3

𝒓(𝑡+Δ𝑡) = tanh 𝐀𝒓(𝑡) +𝐖in 𝒙(𝑡) . (2)
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Fig. 1. Schematic representation of the used methodologies (LSTM: top, RC: 
middle, NG-RC: bottom).

During training 𝒓(𝑡) is recorded and used to fit the output matrix 𝐖out

via ridge regression

𝐖out = arg min
𝐖out

‖‖𝐖out�̃�(𝑡) − 𝒚T(𝑡)‖‖+ 𝛽 ‖‖𝐖out
‖‖ , (3)

where 𝒚T(𝑡) is the target output, 𝛽 the regularization parameter and �̃�
is the quadratic Lu readout given as �̃�= [𝒓, 𝒓2]𝑇 [53]. Once trained, the 
output 𝒚(𝑡) can be calculated from the reservoir state 𝒓(𝑡) as

𝐲(𝑡) =𝐖out�̃�(𝑡) . (4)

When using RC for prediction, it can be run autonomously by using the 
prediction of the previous time step 𝒚(𝑡) as the input 𝒙pred(𝑡) to calculate 
the next predicted time step 𝒚(𝑡 +Δ𝑡) with

𝒓(𝑡+Δ𝑡) = tanh
(
𝐀𝒓(𝑡) +𝐖in 𝒙pred(𝑡)

)
. (5)

We also embed the input data 𝒙(𝑡) using delay embedding given by em-

bedding parameter 𝜏 , where 𝜏 is a tuple which contains the embedding 
dimension and respective time delays. These parameters are optimized 
in a hyperparameter search, described in section 3.7.

3.4. Next generation reservoir computing

Next generation reservoir computing (NG-RC) originates from non-

linear vector autoregression (NVAR) and uses a library of unique mono-

mials of time-shifted input variables of the input data to create its 
feature vector, rather than using a randomly weighted internal network 
as used in classical reservoir computing [38]. The created feature vector 

is mapped to the next data point of the time series using an output layer. 
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As in classical reservoir computing, only the output layer is optimized 
during training using ridge regression. NG-RC can often be deployed 
with small feature vectors, which, together with the computationally 
inexpensive regression optimization, results in a highly efficient algo-

rithm. To generate the feature vector, 𝑘 past time series data points, 
each separated by 𝑠 time steps, are concatenated into a preliminary lin-

ear time-delay state vector. The final feature vector is then created by 
concatenating the unique monomials of orders 𝑂 of the entries in the 
linear time-delay state vector into a new nonlinear state vector. While 
orders larger than 1 are the only source of nonlinearity in this setup, set-

ting 𝑂 = 1 reduces the next generation reservoir computing architecture 
so that it originates from vector autoregression (VAR). The schematic 
representation of NG-RC is shown in the bottom graph in Fig. 1, where 
the functionality of the random reservoir network from the classical RC 
in substituted by the linear time-delayed states and the nonlinear states 
of orders 𝑂.

Applying NG-RC on one-dimensional input data 𝑥(𝑡) like the energy 
demand data in this work, firstly embeds the data by taking 𝑘 previous 
data points which are separated by 𝑠 time steps. This can mathemati-

cally be described by applying a time delay expansion operator 𝐋𝑠
𝑘

on 
the input data, e.g.

𝐋𝑠=3
𝑘=2(𝑥(𝜏)) =

(
𝑥(𝜏)

𝑥(𝜏 − 3Δ𝑡)

)
. (6)

The time-delayed state is then transformed with unique monomials 
of specific orders 𝑂 into a higher-dimensional nonlinear feature vector 
by applying a multiplication operator 𝐏𝑂 . For example, expanding the 
time-delayed state vector of Eq. (6) by the unique monomials of 𝑂 = 1, 2
leads to:

𝐏𝑂=[1,2](
(

𝑥(𝜏)
𝑥(𝜏 − 3Δ𝑡)

)
) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑥(𝜏)
𝑥(𝜏 − 3Δ𝑡)

𝑥(𝜏)2

𝑥(𝜏 − 3Δ𝑡)2

𝑥(𝜏)𝑥(𝜏 − 3Δ𝑡)

⎞⎟⎟⎟⎟⎟⎟⎠
(7)

This way the NG-RC reservoir vectors 𝐫(𝑡) are produced with 𝐫(𝑡) =
𝐏𝑂(𝐋𝑠

𝑘
(𝑥(𝑡))).

These vectors are mapped to the next time point by matrix multi-

plication to perform the prediction. During training, this mapping is 
optimized using ridge regression, which generates the readout matrix 
𝐖𝑜𝑢𝑡. This is identical to the training procedure in traditional reservoir 
computing. The prediction is performed with

𝑥(𝑡+Δ𝑡) ≈𝐖𝑜𝑢𝑡𝐫(𝑡) (8)

and can recursively be applied.

3.5. Evaluation metrics

Three error measures are used in this work to evaluate the prediction 
results of all three methods. They are calculated for the test data sets of 
both data sources (electricity demand and space heat demand) and will 
be the same for all methods respectively. The metrics include the root 
mean squared error (RMSE) and the mean absolute error (MAE) as ab-

solute error measures and the mean absolute percentage error (MAPE) 
as a relative error measure. They are presented in the following Equa-

tions (9), (10) and (11).

𝑅𝑀𝑆𝐸(𝑦, �̂�) =

√∑𝑇

𝑡=1(𝑦t − �̂�t )2

𝑇
(9)

𝑀𝐴𝐸(𝑦, �̂�) =
∑𝑇

𝑡=1 |𝑦t − �̂�t |
𝑇

(10)

100%
𝑇∑ 𝑦t − �̂�t
4

𝑀𝐴𝑃𝐸(𝑦, �̂�) =
𝑇

𝑡=1
|

𝑦t
| (11)
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In scientific publications investigating reservoir computing on theoretic 
data sets also attractor metrics like the Lyapunov exponent are consid-

ered [17]. They show how well the general nature and environment of 
the data are reproduced long term by the prediction and if the system 
is diverging. Looking at the long term behavior of the prediction meth-

ods beyond the forecast horizon of 24 hours is not critical in energy 
management. Therefore, no consideration of these attractor error mea-

sures is given in this work. The given test set consists of 𝑁 time steps. 
A prediction is carried our for every point in time 𝑛 ∈ {1...𝑁} of the 
test set for the following 24 hours, thus 96 time steps. This results in 
𝑁 − 96 single predictions. Every prediction is then evaluated by calcu-

lating all presented error measures. Subsequently, the mean of all errors 
is calculated which will be referred to as the total error on the test set.

3.6. Data preprocessing

Space heat demand data. The data set of simulated space heat demands 
contains data from January 1, 2017, until December 31, 2021, which is 
- aligned with best practice - split into training set, validation set and 
test set for the LSTM models. Since space heat demands show a massive 
seasonal dependency, all data sets have to contain data from all seasons. 
Therefore, data from 2017, 2018 and 2019 is used for training. Data 
from 2020 is used for validation during training and hyperparameter 
optimization and 2021 is used for testing. The test set is kept same for 
all methods to ensure comparability of the results. RC and NG-RC do 
not need a validation set, so they are trained on data from 2017 to 
2020 and tested on 2021, respectively. During the summer time, space 
heat demands are usually zero since no domestic hot water demands 
are included in the depicted space heat demand data.

Main input features: Past space heat demands are the most impor-

tant feature in training the prediction models. RC and NG-RC use this 
as the only input feature for their predictions.

Additional features: For the LSTM only, calendrical features and 
weather features are used in addition to past space heat demands. The 
time features comprise an integer as flag for weekdays, weekends and 
holidays as well as an integer for the time of day. As weather features 
the weather data that was used to generate the space heat demand pro-

files is also used as input feature for the prediction available in hourly 
resolution from [49]. It gets re-sampled to a granularity of 15 min by 
forward fill. The respective measuring station ID is 691 which corre-

sponds to the location Bremen, Germany. The used weather features 
are diffuse and global radiation, wind speed, wind direction, tempera-

ture, relative humidity, air pressure and degree of cloud coverage. In 
total this corresponds to 12 additional input features for the LSTM and 
1 output feature being the predicted demand for the next 96 time steps. 
One input sample therefore contains 13 columns and 96 rows for each 
time step in the sample since the last 24 h of data is used to predict the 
following 24 h. RC and NG-RC do not use these additional features as 
they didn’t improve their performance.

Normalizing: For the LSTM, all features are scaled individually by 
the MinMaxScaler provided by scikit-learn to a range of [0, 1]
[54]. For RC the symmetry of data with regards to zero is important. 
Thus, the input data is normalized to a mean of zero and standard de-

viation of 1 and smoothed by convolution with a kernel width of 5. 
NG-RC does not use an activation function in the classical sense which 
is why scaling of input data is not necessary. Note, this procedure is 
performed for all data sets.

Electricity demand data. The electricity demand data is prepared and 
processed the same way as the space heat demand data despite two dif-

ferences: Firstly, no weather data is available for the used EMS since 
their location is not known. Secondly, the data split into training, val-

idation and test set for the LSTM models differs: The first 70% of data 
points are used for training, the following 20% are used as validation set 
and the remaining 10% of data is used for testing the different meth-
ods. RC and NG-RC are trained on the first 90% of data points and 
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Table 2

Hyperparameters of RC with respect to all applied datasets with EMS3, EMS4 
and EMS5 corresponding to measured electricity demands.

RC 
Hyperparameter

Space heat 
demand

EMS3 EMS4 EMS5

𝑛 2000 2000 2000 2000

𝜅 3 3 3 3

𝜌 0.3 0.3 0.9 0.5
𝜏 (0, 48, 96) (0, 48, 

96)

(0, 96, 
192)

(0, 96, 192)

𝛽 10−8 10−2 10−2 10−2
𝜎 0.1 0.03 0.1 0.01

tested on the remaining 10% which are the same as for the LSTM. Here, 
a data split mid year is feasible, since the electricity demands show no 
significant seasonal dependency likely due to a non-electrified heating 
technology. As for the space heat demand data set, RC and NG-RC use 
past demands as their only input features while the LSTM additionally 
gets calendrical features.

3.7. Hyperparameter optimization

Persistence. The persistence forecast has neither parameters which are 
optimized during training nor hyperparameters to be optimized addi-

tionally.

LSTM. For every of the four data sets a hyperparameter optimiza-

tion is carried out for the LSTM based prediction, respectively. This 
results in individually optimized LSTMs for every data set. The opti-

mization is based on the optuna python module using the provided 
Tree-structured Parzen Estimator (TPE) as sampling algorithm [55]. The 
score to evaluate a LSTM hyperparameter configuration during opti-

mization is set to the MAE calculated for the test data set.

The following hyperparameters are considered during the optimiza-

tion with optuna: Number of LSTM layers, number of dense layers, 
number of neurons per layer, learning rate, batch size, beta1, beta2, 
epsilon, weight decay, clipnorm, clipvalue and ema momentum. An 
explanation of the individual impact and functionality of the hyper pa-

rameters can be found in the respective keras module documentation 
[52].

For all optimization runs, the activation function of all layers is the 
hyperbolic tangent. During training, the MAE is used to quantify the 
LSTM’s performance on the training set and the validation set. For the 
optimization, 1000 different trials are run with different hyperparam-

eter configurations. An early stopping is used during training to avoid 
over-fitting on the training data set taking into account the MAE on the 
validation set.

Reservoir computing. In order to optimize the hyperparameters of the 
RC algorithm, a grid search was performed for the following hyperpa-

rameters: Reservoir dimension 𝑛, average node degree 𝜅, spectral radius 
𝜌, time delay and embedding dimension 𝜏 , regularization parameter 𝛽. 
Additionally, a random noise with mean 0 and standard deviation 𝜎
was added to the training data resulting in increased robustness of the 
algorithm. Table 2 shows the optimized values of the respective RC hy-

perparameters for all data sets.

Next generation reservoir computing. Since the NG-RC architecture does 
not involve randomness, the hyperparameter optimization can be per-

formed by simple grid search. Moreover, these are few in comparison 
to RC and LSTM. The hyperparameters comprise the 𝑘 value, which in-

dicates the number of past data points of the time series considered 
for the prediction and 𝑠 being the index distance between those data 
points. The hyperparameter 𝑂 indicates the orders involved in the non-

linear states. The results presented here were produced with the orders 
involved in the NG-RC set to 𝑂 = 1. We searched extensively for or-
5

ders up to order 4, with 𝑘 values up to 𝑘 = 6 and 10 different 𝑠 values 
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Table 3

Hyperparameters of NG-RC with respect to all applied datasets with EMS3, 
EMS4 and EMS5 corresponding to measured electricity demands.

NG-RC 
Hyperparameter

Space heat 
demand

EMS3 EMS4 EMS5

𝑘 299 180 250 280

𝑠 1 5 5 5

up to 𝑠 = 96 and 13 different regression parameters between 102 and 
10−10. Nevertheless, the results with order 𝑂 = 1 outperformed those 
with orders larger than one. This reduces the NG-RC architecture to a 
linear architecture with respect to the Vector Autoregression (VAR) pro-

cedure. Table 3 presents the values for the hyperparameters 𝑠 and 𝑘 for 
all applied datasets. The regression parameter was set to 𝛽 = 9 ⋅ 10−10
for all tests.

4. Results and discussion

In the following, the performance of RC, NG-RC and LSTM on the 
prediction problem of all 4 data sets is presented. All results will be 
benchmarked against the simple persistence approach as described in 
Section 3.1. Firstly, the focus is set on the results on the space heat 
demand data set. Secondly, the results on the three electricity demand 
data sets are described and discussed. In the end, the sensitivity of all 
methods regarding the size of the available training set is examined 
using all four data sets.

4.1. Simulated space heat demands

Generally, persistence forecasts perform very well on simulated data 
since it contains less randomness and less complex patterns than real-

world measured data. More complex methods have a hard time deliv-

ering a significant improvement over naive approaches here. This can 
be confirmed by the error evaluation shown in Table 4: Considering the 
MAE, LSTM performed best but the relative improvement over the per-

sistence forecast is only 16%. However, looking at the RMSE, NG-RC 
delivered best results with a significant relative improvement of 45% 
over the persistence forecast. This is due to the persistence forecast re-

producing the demand peaks and spikes of the day before, the RMSE is 
high with respect to the MAE since the RMSE penalizes outliers more 
than the MAE. NG-RC seems to be able to predict the peaks better than 
any other method. Nevertheless, none of the methods outperformed the 
persistence forecast considering the MAPE.

Forecasts in the winter time and summer time differ in quality. 
While the complex methods outperform persistence based predictions 
during winter times, where the demand is high, the methods have dif-

ficulties to predict exact zero demands during summer. This behavior 
can be seen in the upper left graph of Fig. 2 where the error measure 
MAE is shown over time for the whole space heat demand test set.

The distribution of errors is depicted in Fig. 3 where the MAE on 
the space heat demand test sets is shown as histograms. The persis-

tence forecast has the broadest error distribution which means the most 
amount of outliers in the predictions which is confirmed by the high 
RMSE compared to MAE for persistence forecast results. On the other 
hand, the histograms of LSTM and RC are very similar with a peak at 
very small MAEs and then a normal distribution of MAEs with a mean 
at approximately 2 kWh for RC and 1.5 kWh for the LSTM. The behav-

ior of NG-RC during summer can also be seen in the respective MAE 
histogram: The peak of very small MAEs is stretched out compared to 
the LSTM and RC but the second peak of the histograms is at smaller 
MAEs of approximately 1 kWh.

Looking at the depicted example days for all prediction methods in 
Fig. 4, significant differences become visible: The upper example day 
(January 22, 2020) shows a day where all methods perform well. On 
that day, the LSTM and RC predict a smooth demand pattern without 

any spikes. NG-RC is the only method that is able to reproduce the 
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Fig. 2. MAEs for all methods and all data sets over the course of the respective test data set.

Fig. 3. Histograms of MAEs on the test set of simulated space heat demand data for all applied forecasting methods.
Table 4

Error measures of all prediction methods calculated for the space heat demand 
test data set with best error values in bold.

Space heat demand test set

Prediction Method MAE [Wh] RMSE [Wh] MAPE [%]

Persistence 984.40 1933.62 23.93

LSTM 829.64 1636.95 42.49

RC 938.98 1240.42 59.92

NG-RC 876.67 1060.68 47.11

small space heat demand peaks in the morning. These spiky predictions 
are also reflected in the smallest RMSE of all methods in Table 4. This 
could be a big advantage over other methods, since it is typical for 
energy consumption to be very erratic. At the same time hardly any 
other sophisticated method is able to predict that kind of behavior.

The example day July 20, 2020 in the middle of Fig. 4 shows a 
summer day without any demand. Therefore, the persistence forecast 
performs best, predicting only zeros due to the day before also hav-

ing no demand at all. The LSTM predicts values very close to zero. RC 
and especially NG-RC are not able to predict values even close to zero. 
RC shows a noisy prediction over the course of the whole day, while 
NG-RC predicts an increasing demand over time. That is a main driver 
for the higher MAEs of these methods compared to the LSTM. This is 
likely the result of neither RC nor NG-RC using the additional calen-
6

drical and weather features for their predictions, hence missing some 
important context which would allow for such qualitatively different 
predictions between the seasons. Yet, for our relatively simple RC and 
NG-RC setups, adding these additional features to the input did not im-

prove their prediction quality overall. This is likely due to the fact that 
on average this data “confuses” the models more during the other sea-

sons than it helps them during summer. For such strongly seasonal data, 
it may therefore be preferable to train seasonal RC and NG-RC models 
to take full advantage of all available data. The last example day (Oc-

tober 25, 2020) shown on the bottom of Fig. 4 is a day in fall where 
all methods underestimate the real demands. But again, only NG-RC is 
able to predict the ramping behavior in the morning and performs best 
compared to all other methods. LSTM and RC show predictions which 
look like a rolling mean of previous days. During the night hours, the 
true demand is zero but again, especially NG-RC and RC have difficul-

ties to predict that and also predict values smaller than zero which does 
not make sense for demand data. Therefore, a postprocessing of the pre-

dictions allowing only positive values would be beneficial.

4.2. Measured electricity demands

On real world data, more complex methods usually outperform sim-

pler approaches like persistence predictions. We show the same be-

havior in our experiments when carrying out forecasts on real world 
electricity demands. In Table 5 it gets clear, that LSTM, RC and NG-RC 

outperform the persistence approach on all three data sets and with re-
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Fig. 4. Three exemplary days of the space heat demand test data set.

Table 5

Error measures of all prediction methods calculated for every test 
set of the used EMS from the EMSIG data set with best error values 
in bold.

EMSIG test data sets

Prediction 
Method

MAE [W] RMSE [W] MAPE [%]

EMS 3

Persistence 588.25 1196.70 68.83

LSTM 436.39 933.86 35.12

RC 448.62 822.10 42.46

NG-RC 475.11 783.87 51.95

EMS 4

Persistence 217.56 377.32 101.06

LSTM 178.23 304.20 62.08

RC 172.03 265.06 62.09

NG-RC 169.76 254.67 70.19

EMS 5

Persistence 724.97 976.72 111.89

LSTM 621.91 868.33 68.41

RC 562.56 736.72 86.35

NG-RC 560.56 714.13 90.56

spect to all applied evaluation metrics. On all three EMSIG data sets, 
the LSTM results in the best MAPE while NG-RC has the smallest RMSE. 
Only on the EMS3 data set, the LSTM outperforms the NG-RC approach 
with respect to the MAE. These observations lead to the conclusion 
that NG-RC is able to perform forecasts with significantly less outliers 
7

compared to RC and LSTM. The small MAPE of the LSTM is due to its 
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ability to predict smaller values better which are more emphasized by 
the MAPE compared to the other absolute error measures. The MAPE 
is generally higher compared to the space heat demands which is due 
to the higher randomness in electricity demands which cannot be pre-

dicted by any prediction method. The high granularity of 15 min also 
leads to more peaks in the demand patterns.

We observe no dependency of the MAE on the season when looking 
at the MAE over the course of all three test sets in Fig. 2. This is likely 
due to a non-electrified heating technology in the buildings and no air 
conditioning in the summer which is generally not common in North or 
Central Europe. When considering the MAE histograms of all methods 
with respect to all data sets in Fig. 5 the persistence forecast has the 
broadest histograms of all methods. This can also be confirmed looking 
at the example days of all data sets in Fig. 6.

Persistence predictions create a lot of outliers by reproducing the 
peaks of the previous day while all other methods predict a more 
smooth demand pattern. NG-RC shows the most deviations of demands 
and therefore reflects the true demand patterns best. Additionally, NG-

RC shows the narrowest histograms for EMS 4 and EMS 5. For EMS 3, 
LSTM, RC and NG-RC predictions result in very similar histograms with 
LSTM being slightly better than RC and NG-RC since it has a higher 
peak at the very small MAEs. In Fig. 6 the predictions of a random day 
(December, 9, 2020) are shown for EMS 3, 4 and 5 respectively. The 
different characteristics of the independent data sets are clearly visible. 
The differences of the predicted demand patterns are similar to the ones 
on the space heat demand data set from the previous section.

Sensitivity to training set size. To investigate the sensitivity of each 
method with respect to the amount of available training data, the size of 
the training data set is systematically reduced, while the test set always 
remains the same. It corresponds to the test set of the other experiments 
to ensure comparability. The reduction of the training data is done by 
halving the non-test data. Only the second half is used for training and 
validation. This procedure is repeated until the non-test data set con-

tains only about two weeks of data. This is true for all four data sets. 
Accordingly, one more reduction step is possible for the space heat de-

mand data because it contains five years of data compared to two years 
of data in the electricity demand data sets.

For the LSTM, the respective non-test data set is split into 80% train-

ing and 20% validation data. RC and NG-RC do not require a validation 
set, but RC uses the first 100 time steps of the training data for its 
synchronization phase and NG-RC uses the first 𝑘𝑠 time steps for its 
warmup time. The synchronization phase and the warmup time is not 
considered in the error evaluation. All procedures are trained individu-

ally on each of the reduced training data sets. For RC and NG-RC, new 
hyperparameters are optimized for each reduction. Due to the inher-

ent randomness of RC, 1000 reservoirs are created for each reduction 
and trained individually. The results of the best reservoir are consid-

ered here. The MAE is calculated as the evaluation measure. The MAE 
of the persistence prediction is shown as a black benchmark line and is 
the same for all training set sizes.

Fig. 7 shows the MAE of all methods for all training set sizes for 
the four data sets: For the simulated space heat demand data set, a 
clear dependence of the MAE of LSTM and RC on the training set size 
is observed. Especially the LSTM MAE increases almost exponentially 
after the second training set size reduction. LSTM yields higher MAEs 
than the persistence forecast after the second reduction, RC after the 
third reduction and NG-RC after the fourth reduction. Consequently, 
NG-RC shows the highest robustness regarding the decrease of amount 
of training data with a relative MAE increase of only approximately 
36% when reducing the amount of training data by 99.3% from first 
to last reduction. This is consistent with the reported results of NG-RC 
requiring only little training data, although the architecture used here 
originates from the VAR approach by only using order 𝑂 = 1 [38–40].

For the electricity demand data sets EMS3, EMS4 and EMS5, the 

dependence of RC, NG-RC and also LSTM on the size of the training set 
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Fig. 5. Histograms of MAEs on the test set of all electricity demand data sets for all applied forecasting methods.
is not as significant as for the space heat demands. All methods show 
a small increase in MAE for smaller test data sets, with this increase 
being smallest for RC for all data sets. Nevertheless, all methods are able 
to outperform the persistence prediction even for the smallest training 
sets.

5. Conclusion and outlook

In this work, we compared three different forecasting methodolo-

gies, namely RC, NG-RC and LSTMs on four different energy demand 
data sets for a 24 h energy demand prediction with a granularity of 
15 min. All results are benchmarked against a naive persistence fore-

cast. One data set contains simulated space heat demand data of a 
residential district while the three other data sets provide measured 
household electricity demands taken from the EMSIG data set. On all 
data sets, the methods LSTM, RC and NG-RC are able to create better 
forecasts than the persistence prediction. The increase of forecast qual-

ity is highest for NG-RC considering the RMSE as evaluation metric with 
27%-45% improvement with respect to persistence predictions and dif-

ferent data sets. Generally, we show the first application of NG-RC on 
energy demands. Considering the MAE, results are comparably good 
as for classical RC and LSTMs but the required training and optimiza-

tion time is significantly smaller compared to classical RC and orders of 
magnitude smaller compared to LSTMs. Additionally, NG-RC is able to 
predict demand patterns with more peaks and deviations which is closer 
to real world behavior and also yields the significantly smallest RMSEs 
on all data sets under consideration. We also examined the sensitivity 
of all methods on the amount of provided training data. For space heat 
8

demands, NG-RC shows the highest robustness regarding the reduction 
of training data while RC showed the least increase of prediction error 
for the electricity demands.

As NG-RC has been successfully applied to various energy demand 
datasets here, future work should investigate its application to real-

world prediction problems in more detail. In particular, NG-RC’s ability 
to predict demand peaks makes it interesting for data types that exhibit 
irregular behavior, as in the energy sector. Furthermore, additional pre-

and post-processing of the input data could ensure a better consistency 
with the given physical conditions. Due to the seasonal fluctuations 
in the prediction performance, the overall performance could be sig-

nificantly increased using multiple seasonal models. Moreover, hybrid 
reservoir computing methods show promising approaches for incorpo-

rating known functionalities into the training [56,57]. For example, 
daily fluctuations, seasonal fluctuations or even persistence could be 
included in the training, which can be expected to increase prediction 
performance even under changing conditions. Finally, the newly devel-

oped minimal reservoir computing technique [58] shows great results 
in its forecast horizon for chaotic systems compared to NG-RC and RC. 
It has yet to be applied to real data and may be another promising can-

didate in the field of energy demand forecasting.
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Fig. 6. Same exemplary day from every EMS test data set.

Fig. 7. MAEs of all forecasting methods on the test set of all data sets dependent 
on the amount of available training data. The amount of training data is halved 
with every reduction.
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