Brucke, Karoline und Schmitz, Simon und Köglmayr, Daniel und Baur, Sebastian und Räth, Christoph und Ansari, Esmail und Klement, Peter (2024) Benchmarking Reservoir Computing for Residential Energy Demand Forecasting. Energy and Buildings, 314 (114236). Elsevier. doi: 10.1016/j.enbuild.2024.114236. ISSN 0378-7788.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0378778824003529?via%3Dihub
Kurzfassung
In the energy sector, accurate demand forecasts are vital but often limited by the available computational power. Reservoir computing (RC) or echo-state networks excel in chaotic time series prediction, with lower computational requirements compared to other recurrent network based methods like LSTMs. Next-generation reservoir computing (NG-RC) is a newer, more efficient variant of classical RC originating from nonlinear vector autoregression and therefore missing the randomness of classical RC. In our study, we evaluate RC and NG-RC for day-ahead energy demand predictions on four data sets and compare it to LSTMs and a naive persistence approach. We find that NG-RC outperforms all other methods when considering the root mean squared error on all data sets but struggles with very small or zero demands. Additionally, it offers a very computationally effective hyperparameter optimization and excels in replicating the inherent volatility and the erratic behavior of energy demands.
elib-URL des Eintrags: | https://elib.dlr.de/204259/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Benchmarking Reservoir Computing for Residential Energy Demand Forecasting | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 1 Juli 2024 | ||||||||||||||||||||||||||||||||
Erschienen in: | Energy and Buildings | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 314 | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.enbuild.2024.114236 | ||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0378-7788 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Reservoir computing, Next generation reservoir computing, Recurrent network architectures, Energy demand forecasting, LSTM | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie, R - Künstliche Intelligenz, R - Maschinelles Lernen | ||||||||||||||||||||||||||||||||
Standort: | Oldenburg | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit Institut für Vernetzte Energiesysteme > Energiesystemtechnologie Institut für Softwaretechnologie | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Brucke, Karoline | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 20 Mai 2024 11:03 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 12 Jun 2024 07:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags