Yang, Yi-Jie und Singha, Suman und Goldman, Ron (2024) A near real-time automated oil spill detection and early warning system using Sentinel-1 SAR imagery for the Southeastern Mediterranean Sea. International Journal of Remote Sensing, 45 (6), Seiten 1997-2027. Taylor & Francis. doi: 10.1080/01431161.2024.2321468. ISSN 0143-1161.
PDF
- Verlagsversion (veröffentlichte Fassung)
12MB |
Offizielle URL: https://doi.org/10.1080/01431161.2024.2321468
Kurzfassung
The ecological and environmental impact of marine oil pollution underlines the importance and necessity of an oil spill surveillance system. This study proposes an operational automated oil spill detection and early warning system to help take quick action for oil combating operations. Oil slicks in the spaceborne Sentinel-1 synthetic aperture radar (SAR) data are detected by a trained deep learning-based oil object detector. These detected oil objects are segmented into binary masks based on the similarity and discontinuity of the backscattering coefficients, and their trajectory is simulated. The detection process was tested on one-year SAR acquisitions in 2019, covering the Southeastern Mediterranean Sea; the false discovery rate (FDR) and false negative rate (FNR) are 23.3% and 24.0%, respectively. The system takes around 1.5 h from downloading SAR images to providing slick trajectory simulation. This study highlights the capabilities of using deep learning-based techniques in an operational oil spill surveillance service.
elib-URL des Eintrags: | https://elib.dlr.de/203269/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A near real-time automated oil spill detection and early warning system using Sentinel-1 SAR imagery for the Southeastern Mediterranean Sea | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 7 März 2024 | ||||||||||||||||
Erschienen in: | International Journal of Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 45 | ||||||||||||||||
DOI: | 10.1080/01431161.2024.2321468 | ||||||||||||||||
Seitenbereich: | Seiten 1997-2027 | ||||||||||||||||
Verlag: | Taylor & Francis | ||||||||||||||||
ISSN: | 0143-1161 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR, oil pollution, near real-time oil spill detection, NRT, deep learning, oil slick trajectory simulation | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||
Hinterlegt am: | 26 Apr 2024 11:52 | ||||||||||||||||
Letzte Änderung: | 29 Apr 2024 10:47 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags