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ABSTRACT
The ecological and environmental impact of marine oil pollution 
underlines the importance and necessity of an oil spill surveillance 
system. This study proposes an operational automated oil spill 
detection and early warning system to help take quick action for 
oil combating operations. Oil slicks in the spaceborne Sentinel-1 
synthetic aperture radar (SAR) data are detected by a trained deep 
learning-based oil object detector. These detected oil objects are 
segmented into binary masks based on the similarity and disconti-
nuity of the backscattering coefficients, and their trajectory is simu-
lated. The detection process was tested on one-year SAR 
acquisitions in 2019, covering the Southeastern Mediterranean 
Sea; the false discovery rate (FDR) and false negative rate (FNR) 
are 23.3% and 24.0%, respectively. The system takes around 1.5 h 
from downloading SAR images to providing slick trajectory simula-
tion. This study highlights the capabilities of using deep learning- 
based techniques in an operational oil spill surveillance service.

ARTICLE HISTORY 
Received 30 October 2023  
Accepted 11 February 2024 

KEYWORDS 
SAR; oil pollution; near real- 
time oil spill detection; deep 
learnin; oil slick trajectory 
simulation

1. Introduction

The spreading and drifting of marine oil slicks can impact aquatic wildlife in large areas and 
have long-term biological and ecological consequences. A spill of 1 ton of oil can cover 
a radius of 50 m with a thickness of 10 mm within 10 min; as it continues spreading, even 
such a small spill could influence an area of around 12 km2 before it disintegrates into 
smaller fragments (El-Magd et al. 2020). To reduce the negative impact of a spill, counter-
measures should be applied as soon as possible. A near real-time (NRT) detection system is 
necessary to enable such a rapid response. Due to its high maritime traffic, the Eastern 
Mediterranean Sea is known as an oil pollution ‘hotspot’ and a vital oil transit centre 
(Kostianoy, Kostianaia, and Soloviev 2020; Polinov, Bookman, and Levin 2021; Zodiatis, 
Coppini, et al. 2017). This makes an oil spill surveillance system increasingly necessary.
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Remote sensing is widely used for oil spill detection since it acquires information 
without physical contact. These sensors can be categorized into optical and microwave 
sensors, and they are usually equipped on shipborne, airborne or spaceborne plat-
forms. Optical images are likely to be influenced by weather conditions and daylight; 
thus, microwave sensors, such as spaceborne synthetic aperture radar (SAR) and side- 
looking airborne radar (SLAR), are preferable for a regular surveillance system. With 
a lower cost for observing a larger area, spaceborne SAR is commonly used in the field. 
Oil dampens gravity-capillary waves and reduces radar backscatter, resulting in dark 
formations in SAR scenes. However, other phenomena, such as algae, low wind areas, 
wind sheltering, and eddies, also manifest as dark regions and are regarded as ‘look- 
alikes’ (Hovland, Johannessen, and Digranes 1994; Topouzelis 2008). A previous study 
showed the possible short- and long-term contribution of oil spills on phytoplankton 
blooms (Tang et al. 2019), highlighting the importance of distinguishing algae and oil 
spills in polluted hotspots.

Conventional oil slick detection in SAR images includes dark formation segmentation, 
feature extraction and classification of oil slicks and look-alikes (Solberg and Solberg 1996). 
Dark formations are first separated from their surroundings, and their features are then 
extracted to identify the difference between oil slicks and look-alikes. Previous studies applied 
artificial neural networks (ANN) to learn features and search for the best feature combinations 
to classify oil slicks and look-alikes (Mera, Veronica Bolon-Canedo, and Alonso-Betanzos 2017; 
Stathakis, Topouzelis, and Karathanassi 2006). However, the radar complexity, source and age 
of oil spills, and weather conditions make it difficult to segment dark formations correctly 
(Mera, Veronica Bolon-Canedo, and Alonso-Betanzos 2017; Topouzelis et al. 2007). Therefore, 
some studies segmented dark formations with one ANN and extracted features for classifica-
tion with another ANN (Singha, Bellerby, and Trieschmann 2013; Topouzelis et al. 2007). 
Previous studies highlighted the advantages of quad-polarimetric and dual-polarimetric HH- 
VV SAR observations on discriminating oil slicks from look-alikes (Migliaccio, Nunziata, and 
Buono 2015; Singha et al. 2016); however, the limited acquisitions of these polarimetric data 
make it hard to apply in an operational system.

With a large amount of accessible SAR data after the advent of the Sentinel-1 
mission by the European Space Agency (ESA) in 2014 and the increasing computa-
tional capability, deep learning algorithms have been increasingly applied in oil 
slick detection. Instead of classifying certain dark formations as oil spills or look- 
alikes, a previous study applied semantic segmentation methods to categorize each 
pixel into one of the following classes: sea surface, oil spill, look-alike, ship or land 
(Krestenitis et al. 2019). There were 1112 Sentinel-1 SAR images with 1250� 650 px 
used, and different models, such as UNet, LinkNet, PSPNet, DeepLabv2 and 
DeepLabv3+, were compared. However, another study pointed out that oil spills 
only represented around 1.2% of the total pixels, which might lead to hindrances 
in directly applying the semantic segmentation method to entire SAR scenes 
(Shaban et al. 2021). Therefore, the authors proposed a two-step approach; each 
image patch was classified by Convolutional Neural Networks (CNN), and patches 
with more than 1 pixel containing oil spills were fed to UNet for segmentation. 
Another study followed similar procedures but integrated oil spill classification and 
segmentation into a single framework by applying multi-task Generative 
Adversarial Networks (GANs) (Fan and Liu 2023).
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Applying machine learning techniques can help reduce the work of human interpretation. 
However, extending the techniques from a limited dataset to an operational service is 
challenging. For studies using pixel-wise classification or semantic segmentation, one advan-
tage is that the exact locations covered with oil are predicted; however, applying them to an 
operational service might be computationally intensive as they classify each pixel of the given 
images, which are the entire SAR scenes. Therefore, previous studies have utilized the oil spill 
detection tool provided in the Sentinel Application Platform (SNAP) toolbox, which identifies 
suspicious dark formations with thresholding and generates image patches containing areas 
of interest (Dhavalikar and Choudhari 2022; El-Magd et al. 2021). After obtaining the image 
patches, the authors applied dark spot detection, feature extraction and classification meth-
ods to acquire the final detections of oil slicks (Dhavalikar and Choudhari 2022).

This study proposes a different approach: The entire SAR scenes are cropped 
into image patches with preferable dimensions by using sliding windows, and 
a trained deep learning-based oil object detector examines these patches to 
retrieve oil slicks. Afterwards, a segmentation method separates the slicks and 
their surroundings to obtain the exact areas covered with oil. Previous studies 
have proven the capabilities of applying object detection algorithms, such as faster 
region-based CNN (Faster RCNN) and You Only Look Once version 4 (YOLOv4), for 
oil slick detection (Huang et al. 2022; Yang, Singha, and Mayerle 2022). The 
proposed oil slick detection system integrates into an early warning system, 
which helps estimate oil-contamination regions and aids in planning an oil com-
batting response. The European Maritime Safety Agency (EMSA) has provided an 
NRT ‘CleanSeaNet’ service since 2007; the operators assess images, identify the 
possible pollution and send alerts to national authorities (Carpenter 2016; 
European Maritime Safety Agency 2017; Singha, Vespe, and Trieschmann 2013). 
Such a service also contributed to a decision support system, which provides oil 
slick prediction models to assist the response agencies (Zodiatis et al. 2016). This 
study aims to provide a fully automated system which only requires the operators 
to confirm the results before sending alerts to its users.

The paper first introduces the structure of the surveillance system in Section 2. Detailed 
information about the satellite data is shown in Subsection 2.1. Subsection 2.2 introduces 
a custom-trained object detector from a previous study and explains the improvements 
done in this study. The utilization of the trained object detector and the segmentation 
method for oil binary mask generation are described in Subsection 2.3. The explanation of 
oil trajectory simulation is given in Subsection 2.4. Subsection 3.1 then evaluates the 
performance of the system and discusses its advantages and disadvantages in different 
circumstances. The model simulations for oil trajectory are compared to SAR observations 
as a validation study in Subsection 3.2. Afterwards, Subsection 3.3 demonstrates the 
operational system and provides a latency test. Finally, Section 4 summarizes the outlook 
and limitations of the system and outlines possible future implementations.

2. Methodology

Figure 1 shows the structure of the oil spill detection and early warning system, which 
contains five subsystems: satellite data processing, oil spill detection, forecasts of synoptic 
conditions, oil slick trajectory simulation and web interface. In the satellite data 
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processing subsystem, Sentinel-1 SAR data is acquired and preprocessed with a series of 
corrections, and the latest coverage of preprocessed SAR over the study area is generated 
as a mosaic to make it easier to help visualize the whole area and understand the 
relationship between acquisitions better. Subsection 2.1 covers the information on 
Sentinel-1 data and the processing details.

Afterwards, the mosaic is delivered to the oil spill detection subsystem, including 
a YOLO-based oil detection algorithm (YODA) and a segmentation method. YODA auto-
matically generates image patches, examines these image patches with an object detector 
from the training phase, and returns detections. The details about training the object 
detector are explained in Subsection 2.2, and the strategy of detecting oil spills over the 
whole study area is described in Subsection 2.3.1. However, as the detections are defined 
by bounding boxes, not the exact region covered by oil slicks, the bounding boxes of 
detections are turned into binary masks by the segmentation method described in 
Subsection 2.3.2. Subsequently, the simulations of the oil slick trajectory and fate are 
performed by the MEDSLIK model (Zodiatis et al. 2012), which uses daily forecasts of 
synoptic conditions and the oil slick binary masks; detailed information regarding oil 
trajectory simulation is explained in Subsection 2.4. The oil slick trajectory simulation 
subsystem is connected to an online interface, which enables decision-makers to perform 
simulations with their annotations and information and visualize the results; examples of 
the web interface are shown in Subsection 3.3. The results can be exported as geographic 
information system (GIS) compliant files, allowing users to display them with their pre-
ferred software. The system is currently running in the pre-operational phase.

The whole system focuses on the area between longitudes 31.5–36°E and latitudes 
31–33.7°N in the Southeastern Mediterranean Sea defined by the dashed boundary in 
Figure 2, where the ocean circulation model for simulating oil trajectory is applicable. 
However, to increase the number of oil objects for training the detector, satellite data is 
collected in an enlarged area with longitude and latitude extended to the west at 30°E 
and north at 34.7°N, respectively (i.e. the solid boundary in the figure). The heat map in 

Figure 1. Structure of the oil spill detection and early warning system using the object detector from 
the training phase and comprising five subsystems: satellite data processing, oil spill detection, 
forecasts of synoptic conditions, oil slick trajectory simulation and web interface (see Subsection 2 
for detailed explanation).
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Figure 2 illustrates the chance of oil slicks occurring in a Sentinel-1 SAR observation on 
each location based on a collection of manually inspected oil objects from 2015 to 2018 
described in the previous study (Yang, Singha, and Mayerle 2022). As each SAR acquisition 
covers only part of the surveillance area, the number of scenes covering each location 
varies. There were at least 240, at most 755 and an average of 402 scenes covering each 
location from 2015 to 2018. Therefore, each pixel value on the heat map shows the ratio of 
the number of collected oil objects and the number of scenes covering that pixel.

2.1. Satellite data processing subsystem

Sentinel-1 SAR Level-1 Ground Range Detected (GRD) products are obtained from 
Copernicus Open Access Hub. Without a special subscription, the data is usually 
available within 24 hours after observation (European Space Agency 2013). Sentinel-1 
SAR was a constellation of two satellites, Sentinel-1A and Sentinel-1B. However, after 
the Sentinel-1B anomaly on 23 December 2021, ESA and the European Commission 
(EC) announced the end of the Sentinel-1B mission on 3 August 2022 (European Space 
Agency 2022a). Thus, the current Sentinel-1 mission includes only Sentinel-1A data, 

Figure 2. Study area map showing the extent of used data and model, along with a heatmap showing 
the chance of each pixel containing oil slicks collected from 2015 to 2018 in the previous study (Yang, 
Singha, and Mayerle 2022). The solid and dashed boundaries define the extent of sentinel-1 SAR 
acquisitions automatically downloaded by the system and the applicable area for oil trajectory 
simulation, respectively. Note that the oil slicks were defined by rectangular bounding boxes showing 
their extents but not the exact coverage. The base map and borders were obtained from Stevens 
(2020) and Wessel and Smith (1996), respectively.
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and the revisiting period increased from 6 to 12 days. Figure 3 indicates the coverage 
of Sentinel-1A tracks over the study area along with the passing day index in a 12-day 
period starting with 24 December 2021 (i.e. the passing day index of 
24 December 2021 is 1). The descending and ascending tracks pass the study area 
at around 03:30–04:05 and 15:30–16:05 UTC, respectively; they are usually available on 
Copernicus Data Hub at around 22:00 UTC. With the plan for the future launch of 
Sentinel-1C and Sentinel-1D (European Space Agency 2022b), it is worthwhile to have 
an operational system relying on the Sentinel-1 mission. However, adapting the 
system for using other SAR missions is also possible.

After download, Sentinel-1 SAR data is preprocessed with a series of corrections, including 
border noise removal, thermal noise removal, calibration, ellipsoid correction and conversion 
to decibels (dB). These are applied automatically using the SNAP Python API provided by ESA 
(European Space Agency 2020). Afterwards, a mosaic of different preprocessed scenes cover-
ing the study area is generated to make it easier to check the location of the new coming 
scenes by comparing them with the previous ones. Skipping the mosaic step and directly 
working on preprocessed images in SAR geometry is also possible. However, in the training 
stage and the pre-operational phase of the system, mosaics provide a more straightforward 
way for experts in different fields to compare SAR with additional information (e.g. wind 
speed). Therefore, the training phase and the oil spill subsystem use mosaics as input.

2.2. Training phase

In a previous study (Yang, Singha, and Mayerle 2022), oil slicks inside mosaics were examined 
and manually annotated as oil objects with bounding boxes with a total of 9768 oil objects 

(a) (b)

Figure 3. Coverage of sentinel-1A tracks in the study area defined in Figure 2, along with the 
estimated passing day index starting with 24 December 2021 in a 12-day period (i.e. 
24 December 2021 has day index 1). The descending tracks pass the study area at around 03:30– 
04:05 UTC and the ascending ones pass at around 15:30–16:05 UTC.
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from 2015 to 2018; they were collected in oil set. Based on the positions of these oil objects, 
the original mosaics were cropped into image patches with dimensions of N� N px, where N 
equals the maximum of the model input size (i.e. 640� 640px) and the edge lengths of the 
object bounding box. Afterwards, these labelled image patches were used to custom train the 
deep learning-based YOLOv4 object detection algorithm (Bochkovskiy, Wang, and Liao 2020) 
on one-class objects (i.e. oil objects). A final detector reached an average precision (AP) on the 
validation and test sets of 69.10% and 68.69%, respectively.

During training, the detector learns the features of objects and negative samples 
where no object is located. However, each image patch contained at least one oil object; 
hence, the detector only learned the patterns of look-alikes and the background signa-
tures when there were oil objects nearby. In the preliminary stage of this study, applying 
the object detector trained with only oil set to YODA returned false detections focusing on 
dark signatures which were not oil slicks. To further improve the detector on targeting 
only oil slicks but not look-alikes, besides oil set, image patches without oil objects but 
with look-alikes or other remarkable signatures (e.g. radio frequency interference) were 
collected as no-oil set and used for training. Note that image patches in no-oil set were not 
given any annotation but were regarded as negative samples for object detectors to learn. 
Figure 4 gives some examples of these image patches. Take the left-most image patch as 
an example, the darker pixels show look-alikes, and the brighter pixels show clean sea 
surfaces; both are learned as negative samples. Therefore, though no-oil set did not 
intentionally collect clean sea surfaces, they were considered and learned in training. 
Table 1 shows the numbers of image patches in oil set and no-oil set.

Data augmentation is commonly applied to increase the amount of data for train-
ing. The previous study has shown the improvement of object detectors trained with 
additional augmented datasets in detecting larger oil objects. However, it performed 
worse in targeting smaller oil objects; thus, the study suggested further examinations 
before applying data augmentation. In this study, the trained object detector is 
applied to YODA; hence how data augmentation might help is also examined by 

Figure 4. Examples of image patches from the no-oil set showing look-alikes and other remarkable 
features.

Table 1. Numbers of image patches collected in 
the oil set and no-oil set.

# Image patches

Dataset oil set no-oil set

training 4273 4369
validation 1218 1245
test 576 747
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comparing the performance of YODA with using different object detectors. An addi-
tional augmented dataset was obtained from the rotation of image patches in oil set 
and no-oil set by 90º, 180º and 270º. To ensure the dataset for performance evaluation 
is not used in the training phase, mosaics in 2019 were inspected jointly by two 
experienced human interpreters, and the annotations are used as ground truth for 
comparison in Section 3.

According the previous study (Yang, Singha, and Mayerle 2022), object detectors have 
their limitation on targeting tiny objects, which were defined as: 

if hobj < himg � Ttiny=hmodel½px�[
wobj <wimg � Ttiny=wmodel½px�

) Obj 2 Objtiny;
(1) 

where hobj, himg and hmodel respectively refer to the heights of the object, image and 
object detector model input; w refers to the corresponding width. Ttiny is a threshold 
for defining tiny objects, it was revealed that tiny objects with Ttiny ¼ 20px were 
difficult to be detected by the object detector. Therefore, the threshold Ttiny is also 
applied in this study.

2.3. Oil spill detection subsystem

In the oil spill detection subsystem, YODA examines mosaics with an object detector from 
the training phase. The strategies of applying such a detector to target oil objects inside 
mosaics automatically and the followed-by segmentation method are explained in the 
following.

2.3.1. YODA
Generally, the dataset used in the training phase should be representative of the 
actual tasks in operation. For instance, if oil objects mostly occupy areas of around 
128� 128px, however, the dimensions of images used for the training and opera-
tional phases are 640� 640px and 10240 � 10240px, respectively, then the detector 
is likely to perform poorly in operation. Thus, YODA first generates image patches 
from mosaic results by sliding windows with default dimensions of 640� 640px and 
1280 � 1280px and their corresponding sliding distances of 600px and 1200px, 
respectively. These image patches are rescaled to 8-bit with pixel values from 0 to 
255 in order to eliminate the difference among backscatter values of different 
acquisitions and to optimize the processing time (Bayramov, Kada, and 
Buchroithner 2018); note that this procedure was executed in the training phase 
as well.

After the initial image patches are generated, the trained object detector goes through 
all these patches to find oil objects inside. The detections are examined again with regard 
to being too close to the border of the image patches or covering an area of more than 
75% of the respective image patch. In the former case, another image patch will be 
generated with the detected object in the centre of the image; in the latter case, an 
enlarged image patch will be used. Several iterations are executed automatically until all 
the detections fit the criteria. The performance of YODA is evaluated by comparing the 
final detections with the manual inspections in 2019 and shown in Subsection 3.1.
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2.3.2. Segmentation section
After obtaining detections from YODA, they are segmented into binary masks, defining 
the exact locations covered by oil. Figure 5 summarizes the procedures in YODA and 
illustrates the segmentation approach. As the detector defines slick boundaries inaccu-
rately in some cases, the bounding boxes of the detections are extended in each direction 
by a certain ratio, and the extended areas are defined as the regions of interest (ROIs). 
Mosaics are rescaled to 8-bit images in YODA; however, the segmentation section utilizes 
the backscattering coefficient in order to segment the oil slick pixel by pixel as accurately 
as possible. The ROIs from the mosaics are loaded as image patches, and each pixel is 
substituted by the median of all the pixels in the kernel area for reducing speckle noise. 
This procedure is also known as median blur, the kernel areas is set to 5� 5px to 
10� 10px depending on the size of ROI.

Discontinuity and similarity are the two basic properties used in segmentation algo-
rithms (Gonzalez and Woods 2018). As oil slicks dampen the gravity-capillary waves and 
reduce radar backscatter, they usually appear as dark formations compared to the slick- 
free sea surface. To distinguish oil slicks and look-alikes, classifiers in previous studies 
learned different features such as statistical, geometrical, textural, contextual and SAR 
polarimetric characteristics (Al-Ruzouq et al. 2020). As one of the statistical features, the 
power-to-mean ratio is commonly applied for defining the homogeneity of either oil slicks 
or their surroundings (Singha, Bellerby, and Trieschmann 2013; Solberg et al. 1999). 
Therefore, it could also be employed for detecting the discontinuity of the oil slick and 
its surroundings. The power-to-mean ratio of each pixel in the ROI is calculated with its 
surrounding pixels and defined as σ=μ, where σ and μ refer to the standard deviation and 
mean of the backscatter coefficients, respectively. The edge between a slick and its 
surroundings is hence revealed by the discontinuity of σ=μ and extracted with a certain 
threshold.

However, in this study area, oil spills commonly appear near ships or at the coasts 
where the backscatter coefficients are higher compared to sea surface and slicks. To 

Figure 5. Detailed structure of the oil spill detection subsystem (see Figure 1 for the structure of the 
entire system). The explanations on YODA and the segmentation step are shown in Subsections 2.3.1 
and 2.3.2, respectively.
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prevent these outliers (i.e. brighter pixels) and pixels covering land areas from interfering 
with the edge detection, they are identified by the constant false alarm rate (CFAR) 
algorithm (Brusch et al. 2011) and a land mask, respectively, and replaced by the average 
value of the remaining pixels in the ROI prior to the edge detection. In CFAR algorithm, 
each pixel (target pixel) in the ROI is surrounded by a guard area and then further by 
a background area. The system uses 19� 19px and 39� 39px for the guard and back-
ground windows, respectively. The mean (μb) and standard deviation (σb) of the back-
ground pixels are used to calculate a threshold for finding bright pixels: 

T ¼ μb þ n � σb; (2) 

where constant parameter n for scaling the threshold is set to 15.
Considering pixels lying on or near edge as a small subset, based on the distribution of 

their backscattering values, a threshold is defined for obtaining oil pixels inside the 
subset; these oil pixels are then regarded as seed points. Afterwards, a final oil slick binary 
mask can be generated by growing the seed points recursively based on similarity to their 
neighbouring pixels, which is defined by the mean and standard deviation of the back-
scatter coefficients among the seed points and the pixels passing the criteria in the 
previous iterations. Subsection 3.2 provides examples of oil binary masks generated by 
the proposed segmentation method.

2.4. Oil slick trajectory simulation subsystem

Oil binary masks from the segmentation section in the oil spill detection subsystem are 
delivered to the oil slick trajectory simulation subsystem, which uses the forecasts of 
synoptic conditions and applies a Lagrangian 3D oil numerical MEDSLIK model to emulate 
oil advection – diffusion and weathering processes (e.g. evaporation, dispersion and 
emulsification). The slick is divided into Lagrangian parcels as representations for the 
advection – diffusion processes and simulates their motion at the water surface (Zodiatis 
et al. 2012).

Advection of oil at the sea surface is driven by wind, sea currents, and waves. The 
MEDSLIK model uses the common ‘wind factor’ approach (Zodiatis et al. 2017), where the 
wind-induced drift is computed as a fraction of the wind speed (i.e. wind factor) and 
directed at a certain angle to the wind direction. In this study, the default simulations use 
3.1% as the wind factor and set the wind direction as the direction of the wind-induced 
drift. The wind-induced drift is computed from the SKIRON atmospheric model provided 
by the University of Athens (Kallos et al. 1997; Papadopoulos, Katsafados, and Kallos 2001). 
The current-induced drift is computed from subsurface sea current velocity to avoid 
double counting the wind influence; the simulated modelled velocity is interpolated to 
30 m depth. The forecast of subsurface ocean current, along with sea water temperature, 
is provided by the SELIPS high-resolution ocean model (Goldman et al. 2014, 2015), which 
uses the SKIRON model, the Copernicus sea surface temperature (SST) observations and 
the ALERMO ocean model (Korres and Lascaratos 2003). The wave-induced Stokes drift is 
derived from significant wave height, mean wave period and mean wave direction from 
the WAM wave model (Gertman et al. 2006), which uses wind forecast from SKIRON. 
Diffusion is emulated by a random walk model calculated with a given diffusion coeffi-
cient; the default coefficient is set to 2.0 m2 · s−1. Figure 1 illustrates the relations between 
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different models to support the explanations above. It should be noted that wind velocity 
and sea water temperature are used to compute weathering processes in MEDSLIK 
(Mackay 1980; Mackay et al. 1980).

Once the oil slick is detected, the information of time, location, slick volume and oil 
type with default parameters is provided to the oil slick trajectory simulation subsystem 
for simulating the trajectory. It checks the availability of daily forecast datasets from each 
model (i.e. SKIRON, SELIPS and WAM) to run a simulation using the most up-to-date 
forecasts at any time. For past events, the synoptic forcing is created from the concatina-
tion of the first day from each forecast datset. The SKIRON, SELIPS and WAM models 
provide hourly output at a horizontal resolution of 0.05°, 0:01� � 0:00833� and 0.125°, 
respectively.

The subsystem is connected to a web interface with a database and a processing 
backend. The web interface displays the oil spill simulation results, which can be down-
loaded by users. It also allows users to execute simulations with their own incident 
scenarios or by modifying the existing scenarios. The incident details and simulation 
parameters are stored in the database. The processing backend manages the simulation 
queue, converts the MEDSLIK output to georeferenced file formats, monitors the state of 
the forecast datasets and processes new SAR observations.

The uncertain oil properties, such as oil type, slick thickness and age, from SAR 
observations make simulating oil transport and fate challenging. The default slick para-
meters are thickness of 1 µm and medium crude oil type (API gravity is 33). The defaults 
are relevant to the automatic simulations, but users can use the web interface to prepare 
and execute another simulation with modified oil type and volume. Subsection 3.2 
compares estimated oil trajectory with continuous SAR observations to evaluate the 
performance of the oil slick trajectory simulation subsystem.

3. Results and discussion

This section first explains the calculation of the performance assessment of YODA in 
Subsection 3.1. Subsections 3.1.1 and 3.1.2 are then compared to the performance of 
YODA applying object detectors trained with different datasets and data augmentation 
configurations, respectively. Afterwards, YODA is further tested on one-year data in 
Subsection 3.1.3; its advantages and disadvantages over different regions are also cov-
ered in the discussion. Subsection 3.2 compares SAR observations with oil slick trajectory 
simulation, supplied with several examples. In the end, Subsection 3.3 illustrates the 
whole oil slick detection and early warning system and provides a latency test.

3.1. Performance assessment of YODA

YODA goes through the input mosaics with sliding windows, targets oil objects inside 
with the custom-trained detector, and outputs the information of oil objects. Each 
detection is followed by a confidence score, which indicates the probability of an oil 
object appearing in the bounding box and how well the box fits the object (Redmon et al.  
2016). The confidence score is defined as: 

Sconf; classi ¼ PðclassijobjÞ � PðobjÞ � IoU; (3) 
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where PðobjÞ refers to the probability that the bounding box contains an object, and 
PðclassijobjÞ denotes the conditional class probability showing that if an object is located 
at the grid cell, how likely it belongs to a specific class i. IoU represents the intersection 
over union, indicating how accurately the box predicts and defined as (Everingham et al.  
2010): 

IoU ¼
areaðBp \ BgÞ

areaðBp [ BgÞ
; (4) 

where Bp \ Bg and Bp [ Bg respectively refer to the intersection and union of the bound-
ing boxes of the prediction (Bp) and the ground truth (Bg). In the testing, there should not 
be ground truth while running the object detector. Predictions from the object detector 
are mentioned as detections in the following paragraphs and abbreviated as detn in the 
tables. As there is no real ground truth data for oil slicks, ground truth (written as gt in the 
following tables) refers to manually inspected oil slicks described in Subsection 2.2.

Only detections with confidence scores greater than a certain threshold, thresscore, are 
regarded as valid detections and compared to manual inspections. Suppose a valid 
detection has a corresponding manual inspection such that their IoU is greater than the 
prescribed thresIoU. In that case, it is considered a True Positive (TP) detection, and its 
corresponding manual inspection belongs to TP as well. As mentioned in Subsection 2.3, 
the detections are examined with several iterations in YODA, so that there might be 
several detections targeting the same slicks if they do not satisfy the criteria of combina-
tion. Therefore, the numbers of TP in manual inspections and detections might be 
different. Note that detections which have intersections with each other can be consid-
ered in one ROI in the segmentation section. False Positive (FP) refers to the detections 
where there is no matched manual inspection. On the other hand, the manual inspections 
that are not targeted by the detector belong to False Negative (FN). It is relatively 
important for an operational system to focus on how negative results influence the 
performance of the system. Thus, false discovery rate (FDR) and false negative rate 
(FNR) are used in the following subsections, they are defined as follows: 

FDR ¼ FP
ðTPþ FPÞ ;

FNR ¼ FN
ðTPþ FNÞ :

(5) 

Some manual inspections have intersected detections but belong to FN because 
their IoU do not pass thresIoU or the detections have confidence scores lower than 
thresscore. On the other hand, some detections are regarded as FP due to their poor 
IoU with the manual inspections. Figure 6 shows an oil slick outlined in blue and its 
corresponding detection in pink; the smaller slick in the figure is not annotated to 
avoid confusion. In this example, the extent of the slick was not defined precisely, 
which indicates the need for improvement in the precision of the object detector. 
However, this kind of FP does not target look-alikes, and the segmentation section 
can still define the exact coverage of the oil. On the contrary, it is especially 
important to reduce the number of FP originating from look-alikes, as they might 
lead to unnecessary cleanup operations. Therefore, the calibrated FDR and FNR are 
introduced and defined as:
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FDRcal ¼
FPcal
ðTPþ FPÞ ;

FNRcal ¼
FNcal
ðTPþ FNÞ ;

(6) 

where FPcal shows the detections targetting at look-alikes and FNcal shows the oil slicks 
with no detection (either valid or invalid detections) intersected. The difference between 
original and calibrated FDR shows the ratio of detections targetting oil slicks but are not 
precise enough. Similarly, the difference between original and calibrated FNR shows the 
ratio of manual inspections that are not detected or detected but with a lower confidence 
score. In the following discussion, thresscore ¼ 50% and thresIoU ¼ 50% are applied.

3.1.1. Adding additional no-oil dataset
As mentioned in Subsection 2.3.1, considering no-oil set in training might help improve 
the performance of the object detector on avoiding FP. In order to verify this assumption, 
the performance of YODA applying detector trained with oil set is compared to applying 
an enhanced detector trained with both the oil and no-oil sets; in the following, YODA-orig 

Figure 6. An example of FP, which does not lead to false alerts, is shown. The blue and pink bounding 
boxes mark the manual inspection and the detection, respectively. Note that this example focuses on 
the selected oil slick, so the smaller slick in the scene is not annotated to avoid confusion.

Table 2. Performance assessment of YODA using two custom-trained object detectors on one-month 
mosaics in June 2019 (see Subsection 3.1.1 for detailed comparison).

# TP # FP # FN FDR [%] FNR [%]

Version # detn gt detn orig cal orig cal orig cal orig cal

YODA-orig 1707 191 370 1337 1182 75 9 78.3 69.2 28.2 3.4
YODA-enh 257 124 179 78 54 142 55 30.4 21.0 53.4 20.7

#gt ¼ 266, thresscore ¼ 50%, thresIoU ¼ 50%
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and YODA-enh refer to YODA applying the two detectors, respectively. Table 2 shows the 
measures of YODA-orig and YODA-enh for testing on one-month mosaics in 2019. The 
calibrated FDR of YODA-orig was 69.2% but YODA-enh had its FDR decreased to 21.0%, 
indicating the substantial improvement of the detector on avoiding FP by applying 
additional no-oil set into training. As YODA-orig detected 1707 objects while there were 
only 266 manual inspections, the detector likely targeted most of the dark formations, 
which had similar patterns as oil slicks, and led to a low calibrated FNR of 3.4%. Regarding 
YODA-enh, the original and calibrated FNR were different by 32.7%, meaning that those 
detections were not defining the extent of the slicks well or not confident enough (i.e. 
confidence scores smaller than thresscore).

To further analyze if FNR associates with the sizes of oil objects, manual inspections were 
categorized into different size groups and shown in Table 3. Oil objects were sorted according 
to the area of the corresponding bounding boxes. If the area is smaller than 12500px (i.e. 
5 km2), the object belongs to the small group; on the other hand, in the large group the area is 
greater than or equal to 100000px (i.e. 40 km2). The remaining objects belong to the medium 
group. According to the table, the detector had relatively high original FNR on medium and 
large groups, meaning it works worse on detecting larger oil objects. One possible reason is 
that small oil objects occupied around 72.3% of all manual inspections; thus, the detector is 
better at detecting smaller objects. Among all the large oil objects, 14.3% of them were not 
detected, and 64.3% of their corresponding detections should be improved to pass the 
thresholds. It is likely due to the lack of examples in the dataset and the complexity of the 
larger oil objects in shapes. Therefore, to increase the number of larger oil objects in training, 
data augmentation focusing on them could be beneficial.

3.1.2. Additional augmented dataset
The following compares the FDR and FNR of YODA applying detectors trained with different 
data augmentation configurations; the inspection time was from January to June 2019. As 
the previous subsection has proven that adding no-oil set for training is beneficial for 
lowering the FDR, the detectors applied to YODA in this subsection used the same dataset 
as detector in YODA-enh but included an additional augmented dataset. Image patches 
containing oil objects in large or medium groups were rotated by 90º, 180º and 270º and 
saved in the augmented dataset. Table 4 shows the numbers of image patches and data 
augmentation configurations of different object detectors applied to YODA. The detectors 
for YODA-enh-aug1 and YODA-enh-aug3 included the augmented dataset with the rotation 
of 90º and three different rotation angles, respectively. The detector for YODA-enh-aug3b 
used the same oil set as the one for YODA-enh-aug3 but considered the augmentation of the 
no-oil set to balance the numbers of scenes in the oil and no-oil sets.

Table 3. Extended comparison from Table 2 focusing on the changes in FN 
and FNR of YODA-enh for different size groups.

FN FNR [%]

Group # gt orig cal orig cal

(1) Small 208 99 39 47.6 18.8
(2) Medium 44 32 14 72.7 31.8
(3) Large 14 11 2 78.6 14.3
all 266 142 55 53.4 20.7

thresscore ¼ 50%, thresIoU ¼ 50%
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Table 5 indicates the performance of YODA using different object detectors. Since it is 
better at detecting small oil objects according to Subsection 3.1.1, the performance on 
large and medium oil objects is emphasized; their FDR and FNR are listed in separate 

Table 4. Overview of the selection of datasets and the numbers of oil objects used for different 
custom-trained detectors used in YODA described in Subsection 3.1.2. The application of rotation data 
augmentation with 90º, 180º and 270º are also noted.

oil set no-oil set

Version orig aug (L+M) # orig aug #

YODA-enh ✓ 6067 ✓ 6361
YODA-enh-aug1 ✓ ✓ (90) 8555 ✓ 6361
YODA-enh-aug3 ✓ ✓ (90, 180, 270) 13531 ✓ 6361
YODA-enh-aug3b ✓ ✓ (90, 180, 270) 13531 ✓ ✓ 12722

Table 5. Performance assessment of YODA using different custom-trained object detectors on six- 
month data from January to June 2019. Detailed comparisons are explained in Subsection 3.1.2.

FDR [%] FNR [%]

# TP # FP # FN orig cal orig cal

Version # detn gt detn orig cal orig cal all L+M all L+M all L+M all L+M

YODA-enh 2099 695 1400 699 453 965 431 33.3 52.6 21.6 43.2 58.1 74.3 26.0 33.9
YODA-enh-aug1 1798 638 1165 633 410 1022 538 35.2 49.3 22.8 38.6 61.6 64.4 32.4 32.9
YODA-enh-aug3 2024 586 1136 888 683 1074 422 43.9 69.3 33.7 63.8 64.7 66.6 25.4 25.5
YODA-enh-aug3b 831 339 635 196 92 1321 929 23.6 42.9 11.1 32.6 79.6 84.4 56.0 59.7

#gt ¼ 1660, thresscore ¼ 50%, thresIoU ¼ 50%

Figure 7. The proportion of positive and negative results on large and medium oil objects with 
different custom-trained detectors for YODA applied; this figure is used as an extended comparison 
from Table 5. The proportions of TP and FP among all the detections are displayed in brown and red, 
respectively. As for the manual inspections, TP and FN are displayed in green and blue, respectively. 
The lighter colours show negative results where manual inspections and detections have intersections. 
A detailed comparison can be found in Subsection 3.1.2.
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columns, and the detection results on these objects are visualized in Figure 7. There 
seems to be a slight improvement of YODA-enh-aug1 on FNR in comparison to YODA-enh; 
however, the ratio of calibrated FP (i.e. the calibrated FDR) on large oil objects has 
decreased. Regarding FNR, YODA-enh-aug1 lowered the original FNR, but the calibrated 
one did not differ much. It seems that different detectors have similar abilities to detect 
large and medium oil objects, but there were more detections from YODA-enh-aug1 
passing the thresholds than the ones from YODA-enh.

To further investigate how different rotation augmentations might help with the perfor-
mance, YODA-enh-aug1 and YODA-enh-aug3 are compared. As mentioned in 
Subsection 3.1.1, adding image patches with look-alikes or other remarkable features 
could help; however, with the imbalanced numbers of images in the oil and no-oil sets for 
training the detector for YODA-enh-aug3, FDR has increased. In other words, it shall be 
essential to have similar numbers of images with and without oil objects inside, and YODA- 
enh-aug3b supports this assumption as it had the lowest FDR among all. However, there 
were only 831 detections but around 1660 manual inspections; the detector seems con-
servative, which led to a relatively high FNR.

In summary, YODA-enh had the best overall performance; however, YODA-enh-aug1 
worked better on targeting larger oil objects. Considering the impact of large oil slicks on 
the environment, YODA-enh-aug1 is the most suitable for the system. However, both of 
them have pros and cons; thus, they are compared further in the following subsection, 
which focuses on the performances on one-year mosaics and discusses their competence 
in different regions.

3.1.3. Performance of the YODA on one-year data
Since algae distribution, maritime traffic and wind condition might vary monthly or 
seasonally, testing YODA for an entire year is necessary. Figure 8 shows the spatial 
distribution of the manually inspected oil slicks collected in 2019 and marks the different 
zones for performance assessment in the following paragraphs. Oil could cause long-term 
biological and ecological consequences; thus, to raise the environmental awareness of the 
authorities, it is vital to highlight the pollution within the territorial waters, where it might 
damage the vulnerable coastal and marine ecosystems of its corresponding countries. The 
territorial waters are defined as 12 nautical miles (around 22 km) off the coast; the green 
line illustrates the region by extending the coastline for 22 km. Note that it is not definitive 
for the actual territorial waters boundaries.

Concerning sources of look-alikes, Figure 9 gives an example on 22 January 2023, 
illustrating possible land-sourced chemical or oil spills, ship-based discharges, wind- 
induced look-alikes and algae. Wind-induced look-alikes commonly appeared off the 
east coast and interfered with detecting oil slicks. As they were not commonly seen off 
the south coast, the red line in Figure 8 separates the coastal region into the Eastcoast and 
Southcoast zones. Usually, wind-induced look-alikes covered a larger area compared to 
the coastal spills; thus, the orange line, extended from the coastline by 5km, splits the 
Eastcoast zone into Eastcoast-5 and Eastcoast-22 zones.

This study focuses on the area where the ocean circulation model is applicable; the 
model area excluding the coastal zones is defined as Sea-in zone, 47.1% of the oil objects 
in 2019 located in this zone. Unlike the coastal area, which contained different sources of 
spills and look-alikes, oil spills away from the coast in the study area were mainly from 
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ships. For this reason, the non-coastal area outside the model area is included in the 
comparison and considered as Sea-out zone. Oil objects and detections are categorized 
into different zones regarding the location of their centre coordinates. Table 6 sum-
marizes the definition of different zones and shows the number of manual inspections 
in each zone.

Table 7 shows the performance of YODA-enh and YODA-enh-aug1 in different 
zones. Overall, they both had similar FDR, but YODA-enh had a lower FNR than YODA- 
enh-aug1, meaning that YODA-enh detected more oil objects; this aligns with the 
findings in Subsection 3.1.2. Similar results are also shown in the Sea-in and Sea-out 
zones but with lower calibrated FNR, possibly due to fewer wind shadows as look- 
alikes in these zones.

Previous studies suggested the ideal wind speed range should be between 3 and 7–10  
m/s for visualizing oil slicks in SAR observations since there was a high possibility of look- 
alikes due to low wind and thinner slicks might be invisible with the strong wind due to 
a combination of oil dispersion (Brekke and Solberg 2005). To better understand how wind 
speed might influence performance, (Figures 10 and Figure 11) illustrate the monthly 
performance and the monthly mean wind speed from the SKIRON forecast, respectively, 
in 2019. Among all the monthly performances, both YODA-enh and YODA-enh-aug1 seem to 
have the worst performance in December, where FDR and FNR were high. In December and 

Figure 8. Based on the definition of the study area shown in Figure 2, different zones are marked for 
further discussion on the performance of YODA in different locations described in Subsection 3.1.3. 
The heatmap shows the number of oil slicks collected from 2019 for testing YODA. The red line 
separates the east and south coasts.
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Figure 9. A mosaic on 22 January 2023 at 03:44 showing different sources of dark formations. Zoom-in 
areas a and B present some common wind-induced look-alikes, algae, land-sourced spills, and 
discharges from ships. Zoom-in area C shows a hotspot with regular land-sourced spills.

Table 6. Definition of different zones in the study area and numbers of manually inspected oil slicks 
are listed. The geographic locations are illustrated in Figure 8.

Zone # gt Descriptions

Eastcoast-5 287 Within 5km off the east coast in the model area
Eastcoast-22 40 Between 5km and 22km off the east coast in the model area
Southcoast 493 Within 22km off the south coast in the model area
Sea-in 731 Model area excluding the zones described above
Sea-out 747 Surveillance area excluding the coastal areas and the zones described above
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January, the strong wind might lead to poor visibility on slimmer oil slicks and result in high 
calibrated FNR in these months. On the contrary, October was the month with the overall 
lowest wind speeds ranging from 2 to 5 m/s, especially in the regions closer to the coast 
where the mean wind speed was lower than 3 m/s. The FDR seems to be high as there might 
be more SAR observations with wind speeds lower than the recommended speed. 
Therefore, wind speed should be considered in the system to provide more reliable results.

A previous study highlighted the operational oil spills with sizes of about 1–10 tonnes 
released by ships that occurred almost daily in the Mediterranean Sea (Kostianoy, 
Kostianaia, and Soloviev 2020). Heavy shipping activities, mainly due to the Suez Canal, 
have caused the Southcoast zone to become an oil pollution hotspot, especially near the 
Port Said according to Figures 2 and Figure 8. Wind-induced look-alikes were less 
common in this zone than the EastCoast; however, the intersection of ships and the 
water surface might cause ship wakes and result in lower radar backscatter compared to 
their surroundings (Tings, Pleskachevsky, and Wiehle 2023). In other words, ship wake was 
one possible source of look-alikes in the heavy ship traffic SourthCoast. Figure 12 shows an 

Table 7. Performance assessment of YODA-enh and YODA-enh-aug1 in different zones on one-year 
mosaics from January to December 2019.

# TP # FP # FN FDR [%] FNR [%]

Version Zone # detn gt detn orig cal orig cal orig cal orig cal

YODA-enh Eastcoast-5 342 131 231 111 77 236 116 32.5 22.5 64.3 31.6
Eastcoast-22 98 14 45 53 47 33 11 54.1 48.0 70.2 23.4
Southcoast 559 224 382 177 86 324 151 31.7 15.4 59.1 27.6
Sea-in 902 323 496 406 244 406 147 45.0 27.1 55.7 20.2
Sea-out 1021 314 619 402 227 466 168 39.4 22.2 59.7 21.5
overall 2922 1006 1773 1149 681 1465 593 39.3 23.3 59.3 24.0

YODA-enh-aug1 Eastcoast-5 281 127 194 87 65 240 152 31.0 23.1 65.4 41.4
Eastcoast-22 55 15 27 28 23 32 11 50.9 41.8 68.1 23.4
Southcoast 407 188 314 93 38 360 225 22.9 9.3 65.7 41.1
Sea-in 849 305 455 394 225 424 188 46.4 26.5 58.2 25.8
Sea-out 1052 303 555 497 280 477 214 47.2 26.6 61.2 27.4
overall 2644 938 1545 1099 631 1533 790 41.6 23.9 62.0 32.0

thresscore ¼ 50%, thresIoU ¼ 50%

Figure 10. The monthly proportion of positive and negative results of YODA-enh and YODA-enh-aug1 
illustrating the possible influence of strong wind and algae seasons explained in Subsection 3.1.3. The 
bars without annotation and annotated with aug1 refer to YODA-enh and YODA-enh-aug1, respectively.
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example of oil slicks and ship wakes in the same SAR observation where the backscatter 
values of slicks were lower than those of ship wakes.

The calibrated FDR of YODA-enh and YODA-enh-aug1 were 15.4% and 9.3%, respectively, 
which were relatively low compared in other zones. It indicated that most of the detections in 
this zone were correct; however, the calibrated FNR of YODA-enh and YODA-enh-aug1 were 
27.6% and 41.1%, respectively, which were higher than overall. As thin slicks or slicks 
propagated and evaporated after a few days on the water might lead to similar low back-
scatter values as ship wakes do, the distinction between them is challenging. Therefore, the 
detectors were more conservative with sending the detections of oil, which led to low FNR. 
Considering FDR, YODA-enh-aug1 seems suitable in this zone for reducing the possibility of 
sending false alarms. However, including ship and wake information might help avoid 
possible FP; in this case, YODA-enh with lower FNR could also be applied.

Similar results are also shown in the Eastcoast-5 zone, where the calibrated FNR were 
relatively high compared to other zones, especially for YODA-enh-aug1. There were ship 
discharges near the ports in both zones but more land-sourced spills in this zone, according 

Figure 11. Monthly average of the wind speed in 2019 from SKIRON.
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to the manual inspections in this study. On top of that, these land-sourced spills were 
commonly interfered with by wind-induced dark formations or active transponders; the latter 
are commonly used for security reasons in the Eastern Mediterranean Sea. Figure 13 shows an 
example SAR scene with radio frequency interference.

Concerning the Eastcoast-22 zone, the FDR seems to be relatively high for both YODA- 
enh and YODA-enh-aug1. As the common wind-induced look-alikes in this zone might 
confuse the interpretation of spills, dark formations near such look-alikes were not 
annotated as oil objects in the training stage unless there was clear evidence. In addition, 
image patches with these unsure dark formations were not included in either the oil or the 
no-oil sets mentioned in Table 1 for training the detectors. However, those unsure dark 
formations were not avoidable for testing the system performance on one-year data. In 

Figure 12. An example on 7 July 2022 at 03:51 showing oil slicks along with ship wakes near Port Said 
off the Egyptian coast. The bounding boxes define slicks, and dark formations near ships (bright pixels) 
are likely to be ship wakes.

Figure 13. An example on 28 February 2017 at 03:42 shows radio frequency interference on SAR, 
which constantly appears in certain regions.
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other words, some detections might target actual spills but be defined as FP because 
those spills were not annotated as oil objects. Therefore, considering synoptic conditions 
at the corresponding time of SAR observations might help increase the quality of manual 
inspections and the confidence of detections.

3.2. Comparison between SAR observations and slick trajectory simulation

In Subsection 3.1, the performance of YODA was evaluated. After detecting oil slicks, they 
are segmented into binary masks and delivered to the MEDSLIK model for hourly estimation 
of the slick trajectory. In some cases, the same oil slicks appeared in SAR observations from 
different Sentinel-1 orbits at different time, which could help understand how SAR observa-
tions and simulations are similar or different from each other. Several oil slicks in continuous 
SAR observations are presented in the following, the continuous observations are all around 
12 hours apart. The distance between centroids of SAR observation and trajectory simula-
tion are computed and used for comparison. Both YODA-enh and YODA-enh-aug1 were 
applied to the selected cases as illustrations on how different detectors target oil slicks.

The annotations of figures in this subsection follow the same format. Detections annotated in 
mosaics from YODA-enh and YODA-enh-aug1 are displayed as blue (light) and orange (dark) 
bounding boxes, respectively; their confidence scores are attached to the bounding boxes (see 
Equation 3 for the definition of confidence scores). In Subsection 3.1, only valid detections (i.e. 
detections passing the confidence score threshold, thresscore) are discussed; however, all detec-
tions in the selected cases are displayed in this subsection. As for comparing SAR observations 
and simulations, the black binary masks display SAR observations sent to the MEDSLIK model for 
trajectory simulation. The estimated positions are marked in light blue and compared to the 
corresponding binary masks (in grey) acquired from SAR, and the overlapped areas are shown in 
orange; their centroids are shown as black and blue crosses for SAR observation and simulation, 

(a) (b)

Figure 14. An example of several oil slicks near Port Said off the Egyptian coast continuously observed 
by SAR on 16 and 17 September 2022. The detections and simulations are compared in different 
zoom-in maps Figures 15 and Figure 16 for regions a and B, respectively.
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respectively. The red line marks the distance between the two centroids. Note that simulations 
are calculated not only for forward but also for backward estimations.

Figure 14 shows oil slicks on 16 and 17 September 2022 at an oil spill hotspot off the 
Egyptian coast according to the heatmap in Figure 2. Most of the slicks were located in the 
zoom-in regions A and B and presented in zoom-in maps in Figures 15 and Figure 16, 
respectively. As there were look-alikes covering areas closer to the coast on 17 September, 
the comparison between simulation and SAR observation only focuses on the northern 
slicks. Overall, most of the observed slicks covered smaller areas after 12 hours; however, 
the simulations show that they might influence larger regions. The oil is assumed to be 
composed of volatile component and non-volatile residue in the model. The evaporation 
of each parcel is an exponential decay process. At the same time, there is eddy diffusivity 
and spreading processes which redistribute the concentration of oil and of the oil parcels. 

Figure 15. Zoom-in maps of region a in Figure 14 showing detections on two continuous SAR 
acquisitions and a comparison between SAR observations and trajectory simulation.

Figure 16. Zoom-in maps of region B in Figure 14 showing detections on two continuous SAR 
acquisitions and a comparison between SAR observations and trajectory simulation focusing on the 
northern slicks.
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It is possible that the diffusivity is overestimated; the actual slick evaporated, dissolved 
into the water, or had low concentrations so they were not able to be detected.

However, in some cases, SAR observations and trajectory simulations did not align 
well, Figure 17 shows such an example on 28 and 29 September 2022. The shape of 
the slick has changed by the wind and currents according to SAR observations. The 
most likely reason for the misfit between forecast and detection is the uncertainty in 
the numerical forecasts of current and wind. By assimilation of velocity observations, 
the forecast may be improved. In that respect, the misfit between observation and 
forecast could potentially be used to improve the forecast quality at oil spill hot spots. 
Moreover, Li et al. (2022) have presented a machine learning approach using reanalysis 
and forecast to train a system that corrects the wind field and improves the error of oil 
forecast. This case is notable because the slick occurred near the centre of an eddy, so 
changes in circulation direction and the resulting deformations of the slick are more 
pronounced.

(a) (b) (c)

Figure 17. An example of an oil slick with its shape changed significantly observed by SAR on 28 and 
29 September 2022, showing the detections on two SAR scenes and a comparison between SAR 
observations and trajectory simulation.

(a) (b) (c)

Figure 18. An example of a possible oil slick appeared near look-alikes on 16 December 2022; the 
observation on the next day and its backward simulation from the following day helped confirm the slick.
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Another example demonstrates the advantage of oil trajectory simulation, 
which helps indicate oil slicks surrounded by look-alikes. Figure 18 shows oil slicks 
on 16–17 December 2022. There were some look-alikes on 16 December, which might 
be algal blooms driven by currents and made it hard to distinguish whether there was 
a slick. SAR observation on 17 December shows a slick having similar shape to the 
possible slick on 16 December and its location fits with the travelling direction from 
trajectory simulation. Though the size of the possible slick on 16 December covered 
much larger area than the one on 17 December, which is likely due to the evaporation 
of the oil, it is reasonable to consider those two slicks as one slick at different time. 
Currently, both YODA-enh and YODA-enh-aug1 could not find the slick on 
16 December as it was surrounded by look-alikes. However, for continuous surveillance 
on a specific study area, simulation of slicks is beneficial for helping the system to 
focus on certain regions likely to contain possible oil slicks which are derived from the 
trajectory estimation of oil from previous scenes.

To compare YODA-enh and YODA-enh-aug1, the following discussion focuses on their 
detections in the above examples. In the first example (see Figures 15 and Figure 16) , 
YODA-enh performed better than YODA-enh-aug1. Most of the slicks were detected by 
YODA-enh though the continuous slicks were considered as many detections. As 
explained in Subsection 2.3, sliding windows are applied to generate image patches for 
feeding the detector. If the detections do not pass the defined criteria, they are examined 
again in the new image patches. In some situations, the size of image patches would be 
larger than the default sizes of the sliding windows. There should be an upper limit for the 
size of image patches; otherwise, the slim and long oil slicks could be invisible to the 
object detector. Therefore, it is reasonable to return several detections for one single long 
and slim slick. In addition, the segmentation method combines the overlapping detec-
tions and generates one binary mask. As one long oil slick could be regarded as several 
detections, it might lead to the poor system performance shown in Subsection 3.1.

Oil slicks in the second example (see Figure 17) appeared at the wind condition that 
was suitable for SAR observation, both oil slicks were wide and distinct from their 
surrounding. Thus, both detectors targeted the slicks correctly with high confidence 
scores. However, in the last example (see Figure 18), both detectors did not find oil 
slicks on 16 December; YODA-enh-aug1 even had a false detection on look-alikes with 
a low confidence score of 27%. It is likely that the patterns of such look-alikes are 
similar to some oil slicks the detector learned during training. Such results align well 
with the comparison in Subsection 3.1.2 (see Table 5) that YODA-enh-aug1 has better 
performance on larger oil slicks, but YODA-enh performs better overall. Considering 
17 December (see Figure 18(b)), both detectors targeted the oil slicks, but none of the 
detections from YODA-enh passed thresscore. YODA-enh-aug1 showed higher confidence 
scores on detecting those oil slicks.

3.3. Oil spill detection and early warning system

Figure 19 provides the approximate time stamps for the operational system and illustrates the 
system on 28 September 2022. The Sentinel-1 SAR descending and ascending tracks pass the 
study area at around 03:30–04:05 and 15:30–16:05 UTC, respectively. Usually, they are avail-
able on Copernicus Open Access Hub at around 22:00 UTC. Therefore, the forecasts of the 
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synoptic conditions should be ready for the trajectory simulation using the MEDSLIK model. In 
any case, it should be possible to obtain the forecasts from the day before. From downloading 
Sentinel-1 data to delivering oil binary masks to the MEDSLIK model, two different machines 
are compared in the latency test. One is a CPU-only machine which uses Intel Xeon E7-8857v2 
CPU and 256 GB RAM; another has Nvidia GeForce RTX 3080 GPU with 10 GB VRAM, AMD 
Ryzen 7 3700X CPU and 32 GB RAM. The latency of YODA highly depends on the complexity 
of SAR scenes, as the complex scenes would increase the number of iterations. The major 
differences are the time intervals for the preprocessing step and YODA; time stamps for the 
GPU machine are noted in brackets. Because of the limited RAM, the GPU machine is slower in 
the preprocessing section as fewer scenes can be processed in parallel; however, using GPU 
increases the efficiency of detecting oil objects. Therefore, deploying on a machine with multi- 
core CPU, sufficient RAM and a GPU for deep learning inference can achieve optimal latency. 
The trajectory simulation is set to 24 durations in the automatic system; increasing the 
duration will result in more time costs. The system also offers tools for users to define their 
polygons (see Figure 20).

Figure 19. The operational chain of the proposed oil spill detection and early warning system, along 
with the time stamps for each process. The CPU-only and GPU machines are compared from down-
loading sentinel-1 data to delivering oil binary masks to the MEDSLIK model. The time stamps in 
brackets show the different latency from the GPU machine. See Subsection 3.3 for further explanation.
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However, skipping the mosaic step and working on preprocessed scenes in SAR 
geometry is possible and should accelerate the system. From preprocessing SAR scenes 
to delivery of trajectory simulation, it takes around 1.5 h for the current system. As shown 
in Figure 19, it takes 10–25 min to generate a mosaic covering the study area, which could 
be a helpful step in the pre-operational stage, as mentioned in Subsection 2.1. However, 
skipping the mosaic step and working on preprocessed scenes in SAR geometry is 
possible and should accelerate the system.

4. Conclusion

This study developed an automated system which provides regular surveillance over the 
Southeastern Mediterranean Sea and sends detections to human operators for confirma-
tion. The performance of applying different custom-trained object detectors for YODA 
was evaluated in Subsection 3.1; YODA-enh and YODA-enh-aug1 stood out as performing 
better than the others and had similar overall calibrated FDR of 23.3% and 23.9%, 
respectively. However, YODA-enh had a lower calibrated FNR of 24.0% than 32.0% from 
YODA-enh-aug, meaning that YODA-enh-aug1 missed more slicks. To further compare 
them and evaluate the slick trajectory simulation from the MEDSLIK model, several oil 
slicks in consecutive SAR observations were carried out in Subsection 3.2. Both YODA-enh 
and YODA-enh-aug1 worked well in some cases but did not find oil slicks in other cases; 
thus, it might be important to analyse their superiority over different criteria.

Various sources of look-alikes appeared regularly in the study area and influ-
enced the performance, especially for algae, wind-induced dark formations and 
ship wakes. Algae occur seasonally, and their density could be provided by chlor-
ophyll-like pigment concentration (chl) data, which might help with filtering out 
the possible FP. In the EastCoast zone where wind-induced look-alikes appeared 
regularly, both detectors had high calibrated FDR of 48% and 41.8% for YODA-enh 
and YODA-enh-aug1, respectively. On the other hand, ship wakes commonly 
appeared in the SouthCoast zone with heavy ship traffic also led to high calibrated 
FNR of 41.1% for YODA-enh-aug1. Therefore, including additional information, such 

Figure 20. A screenshot of the web interface showing how users can define their own oil binary masks.
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as chl, synoptic conditions and ship and wake information, is suggested for 
providing more reliable results and determination of detection confidence and 
alert levels.

The proposed automated early warning oil spill surveillance system provides execution 
results and reports within around 1.5 h after downloading SAR observations with a GPU 
machine. To accelerate the system, future work could include wind speed and chl density 
information in YODA to focus on subareas of the given surveillance area, which have ideal 
wind speed range and low chl density. Alternatively, changing the system structure to 
work on preprocessed data in SAR geometry can also speed up the system. Oil slicks 
appear differently under different circumstances, such as wave height, oil volume, wind 
speed, oil type, sea surface temperature and currents (Bayramov, Kada, and Buchroithner  
2018). Therefore, the proposed system might be limited to the types and sources of oil 
slicks commonly occurring in the Southeastern Mediterranean Sea. However, regarding 
the system as a prototype combining deep learning-based object detection algorithm 
and segmentation method to apply in other oil pollution hotspots is feasible.
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