Lepri, Marco and Bacciu, Davide and Della Santina, Cosimo (2023) Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems. IEEE Control Systems Letters, p. 1. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LCSYS.2023.3344286. ISSN 2475-1456.
PDF
- Published version
2MB |
Official URL: https://ieeexplore.ieee.org/document/10365513
Abstract
This work concerns control-oriented and structure-preserving learning of low-dimensional approximations of high-dimensional physical systems, with a focus on mechanical systems. We investigate the integration of neural autoencoders in model order reduction, while at the same time preserving Hamiltonian or Lagrangian structures. We focus on extensively evaluating the considered methodology by performing simulation and control experiments on large mass-spring-damper networks, with hundreds of states. The empirical findings reveal that compressed latent dynamics with less than 5 degrees of freedom can accurately reconstruct the original systems' transient and steady-state behavior with a relative total error of around 4%, while simultaneously accurately reconstructing the total energy. Leveraging this system compression technique, we introduce a model-based controller that exploits the mathematical structure of the compressed model to regulate the configuration of heavily underactuated mechanical systems.
Item URL in elib: | https://elib.dlr.de/202327/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 19 December 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Control Systems Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/LCSYS.2023.3344286 | ||||||||||||||||
Page Range: | p. 1 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2475-1456 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | autoencoders | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Basic Technologies [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) | ||||||||||||||||
Deposited By: | Strobl, Dr. Klaus H. | ||||||||||||||||
Deposited On: | 23 Jan 2024 14:58 | ||||||||||||||||
Last Modified: | 04 Apr 2024 14:18 |
Repository Staff Only: item control page