
IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024 133

Neural Autoencoder-Based Structure-Preserving
Model Order Reduction and Control Design for

High-Dimensional Physical Systems
Marco Lepri, Davide Bacciu , Senior Member, IEEE, and Cosimo Della Santina , Senior Member, IEEE

Abstract—This letter concerns control-oriented and
structure-preserving learning of low-dimensional approx-
imations of high-dimensional physical systems, with a
focus on mechanical systems. We investigate the integra-
tion of neural autoencoders in model order reduction, while
at the same time preserving Hamiltonian or Lagrangian
structures. We focus on extensively evaluating the consid-
ered methodology by performing simulation and control
experiments on large mass-spring-damper networks, with
hundreds of states. The empirical findings reveal that
compressed latent dynamics with less than 5 degrees of
freedom can accurately reconstruct the original systems’
transient and steady-state behavior with a relative total
error of around 4%, while simultaneously accurately
reconstructing the total energy. Leveraging this system
compression technique, we introduce a model-based con-
troller that exploits the mathematical structure of the
compressed model to regulate the configuration of heavily
underactuated mechanical systems.

Index Terms—Hamiltonian dynamics, model order reduc-
tion, autoencoders.

I. INTRODUCTION

SEVERAL application domains exhibit high-dimensional
dynamics, e.g., continuum mechanics, fluid dynamics,

quantum systems, financial markets. In such contexts, a useful
approach for effective control, which often relies on system-
specific expertise, is to find low-dimensional approximations
of these systems that preserve their key structural proper-
ties [2], [3], [4]. This letter concerns itself with automatic
discovery of these approximations using machine learning.

In machine learning, a wealth of research focuses on
approximating complex nonlinear dynamical systems while
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Fig. 1. The proposed strategy is a two-step process. First, we compress
the configuration space q of the physical system into latent representa-
tions via deep neural autoencoders. We then generate a compressed
dynamical system that uses the learned latent representation while
maintaining the Hamiltonian structure of the complete system.

ensuring the learned dynamics fulfill specific structural proper-
ties [5], [6], [7], [8], which enabled application to model-based
control [9], [10]. The case of direct learning of a com-
pressed dynamics of an high-dimensional system has also been
thoroughly investigated in the literature and applied to model-
based control [11], [12], [13], [14].

A relevant alternative to directly learn the dynamics
combines analytic models with machine learning [15]. An
established strategy is to project the dynamics into a
latent space using principal component analysis (PCA) [16].
Nonlinear counterparts of PCA, such as neural autoencoders
(AE), have been considered only in recent years in [17]
and [18]. These pioneering works target the rendering of
deformable objects in computer graphics, only providing
qualitative analysis of simulation behavior.

In this letter, we make a further step in that direction
by combining deep learning with structure-preserving model
order reduction [19], [20]. Our approach is schematized in
Figure 1. We exploit AEs, investigating both flat [21] and
graph-based AEs [22], to extract compressed representations
of the system’s configuration directly from evolution traces.
Then, by combining the decoder of the autoencoder model
with the original system specification, we derive a new set of
dynamic equations describing the system’s dynamics, while
at the same time maintaining their original Hamiltonian or
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Fig. 2. The five planar models of deformable objects considered in this works, in their rest position when no gravity is present. Each model is a
mass-spring-damper network composed of 205 masses and 636 connections.

Lagrangian form. Relying on such a structure, we also propose
a closed-loop controller that can regulate the configuration
of high-dimensional systems relying on a small amount of
inputs. We thoroughly test these methodologies on networks
of masses interconnected by springs and dampers that can
be seen as a finite element approximation a continuous
mechanical system. We conduct numerical simulations in
the latent space, focusing on the adherence of the reduced
dynamics to the original system and its physical principles.
In addition, we explore the capability of the reduced system
to approximate the real system under highly constrained
latent space dimensions. Finally, experiments on planar
posture regulation are performed, exploiting the learned
representations and developed controller.

This approach holds potential for diverse applications
involving soft robots [23] or deformable objects [24]. For
instance, it could address control tasks on soft robots, lever-
aging approximations of their state to deal with their high
dimensionality and limited actuation. Similarly, it may find
application in the manipulation of deformable objects, where
analogous limitations and challenges exist.

II. DEEP PHYSICAL COMPRESSION

A generic Port-Hamiltonian1 system is defined as

ẋ = [J (x)− R(x)]∇xH(x)+ G(x)u, (1)

where x is the system’s state, and u the input. J is a skew-
symmetric matrix that specifies the interconnection structure,
R is a semi-positive definite dissipation matrix, G is the
input field, and H is the Hamiltonian of the system - i.e., its
total energy. We consider here systems whose state can
be represented as x = (q, p) ∈ R

2n, with q being the
configuration and p the generalized momenta, and having the
following structure

q̇ = ∇pH(q, p), ṗ = −D(q)∇pH(q, p)− ∇qH(q, p)+ G(q)u,
(2)

where D(q) ∈ R
n×n is a dissipation matrix, assumed positive

definite. The term D(q)∇pH(q, p) is a common way to
describe effects that make the energy strictly decrease in
time, as mechanical friction. Note indeed that Ḣ = −q̇�D(q)
q̇ ≤ 0. The control action u is assumed to be of size a and
thus G ∈ R

n×a. For the sake of clarity of derivations, we
assume the Hamiltonian H : R2n → R to be quadratic in the
generalized momenta

H(q, p) = 1

2
p�M−1(q)p + V(q), (3)

where M : R
n → R

n×n is a positive definite matrix
and V : R

n → R the potential energy. Note that Ḣ =
1Analogous derivations would be possible in the Lagrangian one.

−(Mp)�D(Mp) ≤ 0 as D � 0. For example, mechanical
systems have such a structure. In this case, M is called the
inertia matrix.

We assume that a description of the system in the form (2)
is available. Our goal is to obtain a new system with the same
Hamiltonian structure but with a substantially smaller state
space, leveraging the concepts described in the following.

A. Autoencoders
We propose to use a neural autoencoder [21] to compress

the configuration space representation from dimension n to
dimension m << n. An autoencoder is composed of two parts;
an encoder network E : R

n → R
m that compresses q into

its latent representation ξ ∈ R
m<<n, and a decoder network

D : Rm → R
n which maps ξ in an approximation of q. An

ideal autoencoder is one such that E(D) is close to the identity
function, despite m << n. Since we want to solely assess the
robustness of the deep compressor, we use a simple MSE loss
without task-specific regularizations

Lrec(q) = ||q − D(E(q))||22. (4)

B. Compressed System
We perform derivations by assuming an ideal autoencoder,

i.e., one for which the loss in (4) is close to zero. We will
discuss this hypothesis later. We want to give to the latent
dynamics the same Hamiltonian structure of the complete
system (2)-(3). We thus impose the following latent dynamics

ξ̇ = ∇πη(ξ, π), π̇ +�(ξ)∇πη(ξ, π) = −∇ξ η(ξ, π)+ �(ξ)u,

(5)

with π ∈ R
m<<n being the generalized momenta associated

to the latent space configuration ξ ∈ R
m introduced in

the previous subsection. The terms �,� describe the latent-
space dissipation and input field respectively. The latent
Hamiltonian/energy is

η(ξ, π) = 1

2
π�M−1

η (ξ)π + Vη(ξ), (6)

with Mη and Vη being latent space counterparts of M and V .
We now need to derive all the unknowns from the knowledge
of the original dynamics and of the autoencoder. We start by
relating the time derivative of the latent configuration with the
one of the full configuration by the chain rule q̇ = ∇ξD(ξ) ξ̇ ,
where ∇ξD is the Jacobian of the decoder. Combining the first
equation in (5) and (6), we also get π = Mη(ξ)ξ̇ . We then
impose that the latent energy is the same as the total energy
of the system

η(ξ, π) = H(D(ξ), p(ξ, π)) (7)

where p(ξ, π) is a mapping from the latent state to p, and
H is defined as in (3). The following choices of compressed
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potential Vη and inertia matrix Mη fulfill the constraints
imposed by (3), (6), and (7)

Vη(ξ) = V(D(ξ)) (8)

and

π�M−1
η (ξ)π = p�M−1(D(ξ))p,

⇒ ξ̇�MηM−1
η Mηξ̇ = ξ̇�(∇ξD

)�
MM−1M∇ξDξ̇ ,

⇒ Mη(ξ) = (∇ξD(ξ)
)�

M(D(ξ)) ∇ξD(ξ). (9)

Comparing (2) and (5) and following similar steps as for the
energy yields the following expressions for the input field and
the dissipation

�(ξ) = (∇ξD(ξ)
)�G(D(ξ)), �(ξ) = (∇ξD(ξ)

)�
D(D(ξ)).

(10)

To conclude, combining together (5), (6), (8), (9), and (10)
yields the compressed Hamiltonian system in (11) as shown
at the bottom of the page.

This is a low-dimensional dynamical system with the
same mathematical structure of the original high-dimensional
one (2). The two models will represent similar behaviors2 if
Lrec 
 0.

III. LEARNING COMPRESSED REPRESENTATIONS

Compressed representations are obtained as the latent repre-
sentations of a neural autoencoder whose architecture depends
on the nature of the input information used to encode the
uncompressed system. To show the flexible formulation of
our approach, in the following we consider two alternative
autoencoder configurations. The former is a flat autoencoder,
comprising dense feed-forward layers in the encoder and
decoder, where the uncompressed system in input is repre-
sented by the configuration vector q. The second is a graph
autoencoder which leverages a structured representation of the
physical systems meant to highlight their composing parts
(e.g., masses) and the relationships existing between them (the
adjacency constraints).

Deep learning for graphs (DLG) [22] deals with the adap-
tive processing of information represented in a structured
form. These models typically work by learning to represent
the structural elements (nodes, edges) or the full graphs in
embedding vectors h which can then be used for predictive,
descriptive, or generative purposes. The most popular DLG
paradigm leverages a message passing scheme [25] exploiting
local information exchanges between neighboring nodes and
exploits a layered neural architecture (where layering can
be defined also by unfolding in time) to promote effective
information diffusion across the graph. More formally, the
encoding of the v-th node at layer l + 1 is obtained as

hl+1
v = φl+1

(
hl

v, �({ψ l+1(hl
u) | u ∈ Nv})

)
(12)

2Similar is to be intended as the error between the real and reconstructed
transients and steady-states being small.

Fig. 3. Graph Autoencoder architecture. Encoder and decoder are
implemented as a combination of graph convolutional networks (GCN),
to naturally process the graph, and multi-layer perceptrons (MLP), to
process the obtained node embeddings.

where φl+1, ψ l+1 are parameterized neural layers (lin-
ear/nonlinear), and � is a permutation invariant function
defined over the embeddings hl

u of the nodes u in the
neighborhood Nv of v, computed at previous step l. The
general formulation in equation (12) can be specialized to
cover a wide variety of DLG models, as shown in [22]. Within
the scope of this letter, we use a graph autoencoder with the
architecture in Figure 3 where both encoder and decoder are
implemented with a specialization of (12) using SAGE [26] for
neighborhood aggregation followed by an ELU non-linearity
in φ (GCN block in the figure). The encoder obtains the latent
embedding ξ of the full graph through MLPs, which are also
used in the decoder to reconstruct the node features q̃.

We comment here on the assumption, made in Section II-B,
that the autoencoder achieves close-to-zero loss. In general,
this is not trivial to achieve, nor to validate, for any given
configuration, apart for those in the training set. However, the
dissipative nature of the considered systems, guarantees that
the set of reasonable configurations is just a portion of the full
configuration space. Therefore, it is much more reasonable to
assume close-to-zero loss only on that subset, which can be
more easily validated using dense enough simulated data as
external validation/test set.

IV. LATENT SPACE CONTROL

We consider under-actuated posture regulation - i.e., we
want to generate a control action u ∈ R

a such that the high-
dimensional configuration q ∈ R

n of system (2) reaches q̄ ∈
R

n, with a < n. Call ξ̄ = E(q̄) ∈ R
m the compressed encoding

of q̄ and assume that the system state (q, q̇) is compressed
online into (ξ, ξ̇ ) through E and its Jacobian. The controller
we propose has the form:

u
(
ξ̄ , ξ, ξ̇

) = AL(
ξ̄
)

⎛

⎜⎜⎜
⎝
∂V(D(ξ))

∂ξ
(ξ̄ )

︸ ︷︷ ︸
FeedForward

+α(ξ̄ − ξ)− βπ
︸ ︷︷ ︸

Feedback

⎞

⎟⎟⎟
⎠
, (13)

where A = (∇ξD(ξ))�G(D(ξ)), with AL its left inverse,
and α, β ∈ R

+ are positive control gains. This controller is
essentially operating an output regulation when taking E(x)
as output. The task-space3 closed loop generated by (11)

3As common in mechanical systems control literature [27], we refer to
task-space dynamics as the second order dynamics describing the evolution
of a function of the configurations; E(q) in this specific case.

ξ̇ = ∇πη(ξ, π), π̇ = −∇ξ η(ξ, π)+ (∇ξD(ξ)
)�
(G(D(ξ))u − D(D(ξ))∇πη(ξ, π)),

with η(ξ, π) = 1

2
π�(

(∇ξD(ξ))�M(D(ξ)) ∇ξD(ξ)
)−1

π
︸ ︷︷ ︸

Latent Space Kinetic Energy

+ V(D(ξ))︸ ︷︷ ︸
L.S. Potential E.

. (11)
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and (13) is π̇ = [(∇ξ η(ξ, π) − ∇ξ η(ξ̄ , 0)) + α(ξ̄ − ξ)] −
[(∇ξD(ξ))�(D(D(ξ))∇πη(ξ, π)) + βπ ], where we used that
AAL = I and that ∇ξ η(ξ̄ , 0) = ∇ξ (V ◦ D)(ξ̄ ). The con-
vergence follows with standard arguments that we do not
report here for the sake of space, under the assumption that
αI + (∇ξ η(ξ, π) − ∇ξ η(ξ̄ , 0)) is positive definite in ξ̄ , 0.
The closed loop energy η(ξ, π) + α(ξ̄ − ξ)�(ξ̄ − ξ) can
be used as Lyapunov candidate, which has time derivative
V̇ = π�[∇ξD(ξ)�D(D(ξ))∇ξD(ξ) + β]π ≤ 0, and invoking
La Salle principle. In turn, convergence to the task-space
equilibrium implies ||E(qt)− E(q̄)|| → 0. Note that we could
leverage this common arguments [28] because our learning
technique is such that the task-space dynamics of E(x) is an
Hamiltonian system.

V. SIMULATIONS

A. Setup
We evaluate the performance of the approach in com-

pressing high-dimensional mechanical systems. We focus on
continuously deformable planar bodies subject to a gravita-
tional field and generic external perturbing forces. This class
of systems is quite relevant from an application perspec-
tive as it is central in robotic manipulation of deformable
objects [24] and control of soft robots [3]. We consider mass-
spring-damper models as high-dimensional models of these
systems [23]. This is a widely used technique to approximate
soft-body dynamics by discretizing their volume as a set of
masses (nodes) interconnected by ideal springs and dampers
(edges). We use simulation data of the systems to train
an autoencoder to reconstruct their configuration q. Then,
exploiting the learnt latent representation ξ , we simulate the
corresponding full-space system by solving the compressed
dynamics equation (11).

1) Data: We use five high-dimensional, randomly generated
systems in the form of (2). Figure 2 shows the considered
systems in their rest position. Each system is made of
200 masses and e = 636 connections resulting in n = 400
degrees of freedom captured in the configuration vector q. We
consider systems immersed in a constant gravitational field.
For each system, we perform 7 simulations to generate training
data and 28 simulations for test purposes. Gravity conditions
change for each simulation. The initial configuration q(0) is
randomly generated, while the systems always start at rest, i.e.,
p(0) = 0. More details on the data generation can be found
in Section A.1 of the supplementary material.

2) Training and Model Selection: A flat autoencoder and a
graph autoencoder are trained for each system, with a latent
size of 5 units. The same neural architecture is used across
systems, while hyperparameters are selected via grid search
for each system. Training, validation and test reconstruction
scores (MSE) of the best model, for each system, are reported
in Table I. More details on the training and model selection
can be found in Section A.2 of the supplementary material.

B. Simulation Results
In order to validate and evaluate the approach, we use the

trained models to reconstruct the test full-space simulations,
and we compare results in terms of reconstructed state (q, q̇)
and energy H. In particular, we evaluate the approach in two
different ways. First, for pointwise evaluation, we reconstruct
the system state and energy at each step of the real simulation
by applying the autoencoder end-to-end to the real system
configuration D(E(q)) and velocity ∇E(q)D · ∇qE q̇. Second,

TABLE I
TRAINING, VALIDATION AND TEST MSE SCORE FOR THE BEST

FLAT AND GRAPH AUTOENCODERS, FOR EACH SYSTEM

we use equation (11) to simulate the evolution in the com-
pressed space and reconstruct the configuration D(ξ), velocity
(∇ξD)ξ̇ and energy η(ξ, π) from the latent variables at each
simulation step (compressed evaluation).

Figure 4 shows the average pointwise and compressed
MSE w.r.t. time for each system. The two models have
similar results in the compressed simulations, with the graph
autoencoder having a slightly higher error, although it largely
depends on the considered system. In all the cases, the
compressed error on q is a few orders of magnitude higher
than the pointwise error. Interestingly, the error on q̇ follows
a similar behaviour although the models are never explicitly
trained to reconstruct this information.

The reconstructed energy η has the opposite trend: it is bet-
ter reconstructed in the compressed case than in the pointwise
case. This is due to the fact that pointwise reconstructing the
state does not allow energy variations to govern the dynamics
of the system, while this is possible in the compressed case.
As a further evidence, Figure 5 shows the evolution of the
kinetic, potential, and total energy in a simulation. While
the single kinds of energy might not be reconstructed as
precisely in the compressed case, the total energy maintains the
same non-increasing behaviour typical of dissipative systems.
Qualitatively, compressed simulations are stable and loyal to
the real ones, with a good match of the full transient. Figure 6
shows some frames from an example simulation. The portions
where the real and reconstructed systems are not perfectly
aligned are also those that exhibit major and more varied
oscillations, such as the bottom portion of the central chain or
some lateral structures. Videos can be found here.

C. Compression Analysis
We further analyze how much the approach can compress

the systems’ state. Figure 7 shows the test MSE on the
five systems varying the latent state size for both flat and
graph autoencoders. In most cases, 3 variables are enough
to efficiently represent the system’s state with a reasonable
approximation error, while using more variables typically
results in small or marginal improvements in the error. Using
2 variables seems to not be enough to effectively capture
all systems’ behaviours as can also be observed from the
reconstructed trajectory of some of the masses in Figure 8.
We can notice that, with 2 variables, minor oscillations are not
correctly reconstructed, and there is a consistent gap between
the real and reconstructed trajectory. This does not happen
when using 3 or more variables. The 2 variables case is
also useful to show what happens when the assumption that
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Fig. 4. MSE on the reconstructed position D(ξ ), velocity (∇ξD)ξ̇ and
total energy η(ξ, π ) of the systems in the test trajectories using: a flat
autoencoder (left) and a graph autoencoder (right). For each plot, the
bold line is the median error over the trajectories, while the shaded area
represents the 20-80 percentiles.

the model achieves close-to-zero loss does not hold. Indeed,
the reduced model still approximate the real-space model,
although losing the ability to represent some of its particularity.
We also believe the models can be successfully used for latent
space simulations, although these could deviate much more
from the real ones.

D. Control Experiments
1) Setup: We test the proposed controller by simulating its

application for planar posture regulation on the second spring
network in Figure 2. The system is actuated by a generalized
force τ ∈ R

2 applied to a single mass at each simulation step.
Our controller employs an autoencoder with latent size m = 2,
trained as in the previous sections. The actuation matrix is
therefore the selection matrix

[
0 · · · 0︸ ︷︷ ︸

a−1

I 0 · · · 0︸ ︷︷ ︸
N−a

] ∈ R
2×2n,

where a is the index of the actuated mass and I ∈ R
2×2

is the identity matrix. We perform 50 simulations, randomly
selecting the target configuration among the configurations
q̄ in the training/validation simulations. The actuation mass
is randomly selected among three fixed candidates chosen
in correspondence with the lateral structures and as far as

Fig. 5. Example of evolutions of the kinetic, potential and total energies
in a simulation for the full-space and reduced systems using: a flat
autoencoder (top) and a graph autoencoder (bottom). The total energies
are the Hamiltonians H and η introduced in (3) and (7) respectively. The
solid line is the energy of system (2), while the dotted and dashed lines
are the pointwise reconstructed and compressed energy.

Fig. 6. Comparison between frames from a real simulation (yellow), a
pointwise reconstructed simulation (orange), and a reduced simulation
(blue) using a flat autoencoder (above) and a graph autoencoder
(below).

Fig. 7. Test MSE on the five considered systems varying the latent state
size of a flat autoencoder and a graph autoencoder.

possible from the structure edges. The initial state is always
the rest position with zero initial velocity. The simulations are
5 seconds long.

2) Results: We evaluate the controller according to the
MSE between the full-space system configuration at time t and
the target configuration x̄. We report the resulting Figure 9. The
dashed line represents the median error among the considered
simulations, while the band represents the 25-75 percentiles
of the error.

VI. CONCLUSION

This letter investigated the application of deep autoen-
coders to the compression of high-dimensional dynamical
systems, while maintaining Hamiltonian/Lagrangian structural
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Fig. 8. Example of reconstructed trajectory with different sizes of latent
state.

Fig. 9. Evolution of the normalized MSE through time and across
several simulation, calculated between the reference configuration q̄ and
the actual configuration q(t). The shaded are refers to the first and third
quartile.

properties in the low-dimensional approximation. The
approach was extensively validated and evaluated over several
high-dimensional mass-spring-damper models. The reduced
systems were exploited to perform simulation in the latent
space, from which the original complete space evolution were
reconstructed. We also proposed a possible usage of such com-
pressed representations for planar posture regulation of highly
underactuated systems, evaluating the developed controller in
simulations. Future work will focus on developing and testing
data-driven control algorithms for high-dimensional systems
where model-based strategy are used in conjunction with the
learned latent model. We will also dive into extending the
approach to systems whose Hamiltonian differs from (3),
including fluid dynamics [29] and astronomy [30].
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