Lepri, Marco und Bacciu, Davide und Della Santina, Cosimo (2023) Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems. IEEE Control Systems Letters, Seite 1. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LCSYS.2023.3344286. ISSN 2475-1456.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10365513
Kurzfassung
This work concerns control-oriented and structure-preserving learning of low-dimensional approximations of high-dimensional physical systems, with a focus on mechanical systems. We investigate the integration of neural autoencoders in model order reduction, while at the same time preserving Hamiltonian or Lagrangian structures. We focus on extensively evaluating the considered methodology by performing simulation and control experiments on large mass-spring-damper networks, with hundreds of states. The empirical findings reveal that compressed latent dynamics with less than 5 degrees of freedom can accurately reconstruct the original systems' transient and steady-state behavior with a relative total error of around 4%, while simultaneously accurately reconstructing the total energy. Leveraging this system compression technique, we introduce a model-based controller that exploits the mathematical structure of the compressed model to regulate the configuration of heavily underactuated mechanical systems.
elib-URL des Eintrags: | https://elib.dlr.de/202327/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Neural Autoencoder-Based Structure-Preserving Model Order Reduction and Control Design for High-Dimensional Physical Systems | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 19 Dezember 2023 | ||||||||||||||||
Erschienen in: | IEEE Control Systems Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/LCSYS.2023.3344286 | ||||||||||||||||
Seitenbereich: | Seite 1 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 2475-1456 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | autoencoders | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Basistechnologien [RO] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||
Hinterlegt von: | Strobl, Dr. Klaus H. | ||||||||||||||||
Hinterlegt am: | 23 Jan 2024 14:58 | ||||||||||||||||
Letzte Änderung: | 04 Apr 2024 14:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags