Neagoe, Iulia and Faur, D. and Vaduva, C. and Datcu, Mihai (2023) Band Reconstruction Using a Modified UNet for Sentinel-2 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp. 6739-6757. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3276912. ISSN 1939-1404.
PDF
- Published version
10MB |
Official URL: https://ieeexplore.ieee.org/document/10128669/authors#authors
Abstract
Multispectral (MS) remote sensing images are of great interest for various applications, yet, quite often, an MS product exhibits one or more noisy bands, strip lines, or even missing bands, which leads to decreased confidence in the information it contains. Meeting this challenge, this article proposes a UNet-based neural network architecture to reconstruct a spectral band. The worst case scenario is considered, that of a missing band, the reconstruction being performed based on the available bands. Besides the comparison with state-of-the-art methods, both the qualitative and quantitative analyses are fulfilled considering several metrics: root-mean-square error, structural similarity index, signal-to-reconstruction error, peak-signal-to-noise ratio, and spectral angle mapper. The experiments focus on Sentinel-2 open data within the Copernicus program. Various patterns of urban areas, agricultural regions, and regions from North Pole or Kyiv, Ukraine are included in our dataset to prove the efficiency of band reconstruction regardless of land-cover diversity.
Item URL in elib: | https://elib.dlr.de/201625/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Band Reconstruction Using a Modified UNet for Sentinel-2 Images | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | May 2023 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 16 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3276912 | ||||||||||||||||||||
Page Range: | pp. 6739-6757 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Band reconstruction, multispectral (MS) images, remote sensing, Sentinel-2 (S2), UNet | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Deposited On: | 10 Jan 2024 14:47 | ||||||||||||||||||||
Last Modified: | 11 Jan 2024 13:57 |
Repository Staff Only: item control page