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Abstract—Multispectral (MS) remote sensing images are of great
interest for various applications, yet, quite often, an MS product
exhibits one or more noisy bands, strip lines, or even missing bands,
which leads to decreased confidence in the information it contains.
Meeting this challenge, this article proposes a UNet-based neural
network architecture to reconstruct a spectral band. The worst case
scenario is considered, that of a missing band, the reconstruction
being performed based on the available bands. Besides the compar-
ison with state-of-the-art methods, both the qualitative and quanti-
tative analyses are fulfilled considering several metrics: root-mean-
square error, structural similarity index, signal-to-reconstruction
error, peak-signal-to-noise ratio, and spectral angle mapper. The
experiments focus on Sentinel-2 open data within the Copernicus
program. Various patterns of urban areas, agricultural regions,
and regions from North Pole or Kyiv, Ukraine are included in our
dataset to prove the efficiency of band reconstruction regardless of
land-cover diversity.

Index Terms—Band reconstruction, multispectral (MS) images,
remote sensing, Sentinel-2 (S2), UNet.

I. INTRODUCTION

R EMOTE sensing used in the scope of earth observation
(EO) is among the most essential technologies in learning

and understanding the earth’s surface. The systems used to
acquire information are complex and sensitive, but to effec-
tively exploit them, we expect a flawless operation. However,
for various reasons, such as extreme atmospheric conditions
or physical degradation of some components of these sensors,
important information may be missing in the acquired images.
As the time passes since satellites were launched and fulfill
their mission, there is a great risk of sensor’s degradation.
These degradations can mean noise in the form of lines, the
lack of partial information, or even the total lack of a spectral
band. Fig. 1 shows such an example, which emphasizes the
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Fig. 1. Example of (a) corrupted band and (b) reconstructed band using the
proposed method.

need of band recovery due to sensor-generated artifact in the
acquired band. The recovered one does not contain any corrupt
information because the complementary spectral information is
clean and untainted.

Addressing the challenge of a missing or degraded spectral
band, this article presents a method of valorizing the spectral
information available in the other bands to predict it. We consid-
ered the worst case scenario, that is, the lack of any information
relative to the missing band, while the reconstruction process
uses the available complementary spectral bands.

The suggested method implements a convolutional neural
network (CNN) architecture named U-Net, modified to fulfill
a specific need: learn spectral and spatial information in order
to better reconstruct the band. Designing a framework able to
reconstruct any band of a Sentinel-2 (S2) product leads to a
solution individually applied for each band. The following sec-
tions detail the proposed concept, the implementation aspects,
the consideration of the sensor’s spectral characteristics, and the
experimental results. In the end, we provide the assessment of
the results, draw conclusions, and highlight further perspectives.

II. RELATED WORK

Remote sensing instruments for recording information about
the earth’s surface are the main sources of data regarding the
observation and understanding of the planet on which humans
live. However, it infrequently happens that these sensors suffer
certain physical degradations, which cause incomplete data ac-
quisition . The missing data can be manifested both in the form
of noises present on certain bands or stripe lines and the total
absence of a spectral band.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9902-2071
https://orcid.org/0000-0001-5208-5753
https://orcid.org/0000-0001-6577-4558
https://orcid.org/0000-0002-3477-9687
mailto:neagoe.iulia@yahoo.ro
mailto:danielafaur@gmail.com
mailto:corina.vaduva@gmail.com
mailto:mihai.datcu@dlr.de
mailto:mihai.datcu@dlr.de


6740 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

The incompleteness of MS products affects numerous appli-
cations that rely on them. Hence, this challenge was widely
investigated in an attempt to solve the missing information
reconstruction.

Over time, different methods have been submitted to ap-
proach this subject, which can be differentiated according to
the used basic principle: the information needed to perform the
reconstruction. Thus, depending on the source of this informa-
tion, four types of methods can be distinguished: spatial-based,
spectral-based, temporal-based (multitemporal), and mixed (hy-
brid) methods [1].

A. Spatial-Based Methods

Spatial-based methods, also known as inpainting methods,
are among the most classical and primitive because they use the
remaining information to generate the missing information. The
basic idea behind them is represented by the fact that both the
missing data and the remaining data contain the same geometric
and statistical structures [2]. Spatial correlation is the main
hypothesis on which these methods are based.

Many of these solutions have been studied in the field of com-
puter vision, but they can also be applied to multispectral remote
sensing images. Over time, they have evolved from classical
methods, based on algorithms and sequential transformations, to
the use of neural networks. Zhang et al. [3] propose an alternative
interpolation method for the local linear histogram-matching
technique, namely the kriging geostatistical technique able to
fill data gaps. The same interpolation has been used in [4] to
retrieve aerosol optical depth over the pixels that could not be
considered by the custom dedicated algorithm. The approach
presented in [5] is based on the joint interpolation of image gray
levels and gradient/isophote directions, smoothly extending in
an automatic fashion the isophote lines into the holes of missing
data. Maalouf et al. [6] introduce a Bandelet-transform-based
inpainting technique to remove cloud-contaminated portions of
a remotely sensed image and fill the missing data. Chan and
Shen [7] introduce a nonlinear partial differential equation in-
painting model based upon curvature-driven diffusions for non-
textured images. Previous works use a maximum-a-posteriori-
based algorithm for both destriping and inpainting problems [8]
or multichannel nonlocal total variation for textured images and
reconstruction of large-scale areas [9].

However, spatial-based methods can encounter problems such
as unconnected edges, blur effect, or texture inconsistency.

B. Spectral-Based Methods

The methods of recovering a band based on the use of spectral
information are dependent on the data available on the other
spectral bands. Due to the characteristics of the sensors, in the
multispectral and hyperspectral images, there is a lot of redun-
dant information that can be used for useful purposes. However,
there is a prerequisite: the bands needed for reconstruction must
exist and be complete.

So far, few spectral-based methods have been proposed to
recover the missing information or even an entire band. The first
ones addressed the problem of Aqua MODIS images that had

band 6 with stripe noise and assumed the use of polynomial
regression to retrieve this band from band 7 measurements
[10], combining histogram matching to correct the detector-
to-detector striping of the functional detectors with local least-
squares fitting that restores the missing data based on a cubic
polynomial derived from the relationship between bands 6 and
7 [11] or within-class local fitting that incorporates scene types
and spectral band characteristics [12]. These methods included
only two bands as sources of information or reconstruction for
Aqua MODIS, while Gladkova et al. [13] described a quantita-
tive image restoration algorithm that handles a small number of
functioning detectors to train a restoration function that is based
on a multivariate regression using the information in a spatial–
spectral window around each restored pixel. For the same task,
Li et al. [14] implemented a robust multilinear regression based
on the spectral relations between working detectors in band 6
and all the other spectra, showing better results.

Later, methods based on neural networks revealed improved
results. Rout [15] studied the ability of supervised and adversar-
ial learning to address the task of missing band reconstruction
with the sole supervision of existing spectral and spatial prior
distribution. Their band recovery method modified the super-
resolution solution developed by Rout et al. [16], based on deep
CNNs that encompass two major learning mechanisms: global
and local residual learning.

C. Temporal-Based Methods

Temporal-based methods imply the use of additional infor-
mation obtained from images acquired at a short time interval
over the same geographical area.

The most well-known approaches include temporal replace-
ment [17], [18], [19], [20], [21], the use of temporal filters [22],
[23], [24], or the temporal learning model [25], [26]. Zeng
et al. [17] used multitemporal regression analysis and a regu-
larization method to recover missing pixels for Landsat ETM
imagery. Furthermore, based on the concept of utilizing tem-
poral correlation of multitemporal images, in [18], a patch-
based information reconstruction algorithm spatiotemporally
segments a sequence of images into clusters containing sev-
eral spatially connected components called patches and then
clones information from cloud-free and high-similarity patches
to their corresponding cloud-contaminated patches. In [19],
missing measurements are reconstructed through an unsuper-
vised contextual prediction process that reproduces the local
spectrotemporal relationships between the considered image
and an opportunely selected subset of the remaining temporal
images, while Zhang et al. [20] handle missing data by creating
appropriate covariates and then fitting a functional concurrent
linear model on the resulting data. A straightforward method
based on the Savitzky–Golay filter to smooth out noise caused
by cloud contamination and atmospheric variability in NDVI
time series is presented in [22], while a changing-weight filter
approach for reconstructing a high-quality NDVI time series
is presented in [24]. The reconstruction of area obstructed by
clouds based on the compressive sensing theory introduced
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in [25] enables finding sparse signal representations in under-
determined linear equation systems, while, for the same task,
Li et al. [26] advance two multitemporal dictionary learning
algorithms, expanding the K-SVD and Bayesian algorithms, to
make better use of the temporal correlations.

The biggest drawback of these methods lies in the ground
changes appeared in the time elapsed to first accurate available
data used for reconstruction. These changes may be due to
new construction or natural hazards, such as flood or fire, or
even problems that occurred during the acquisition of the image
(observation conditions and atmospheric conditions).

D. Hybrid Methods

Since the three types of methods presented above have both
advantages and disadvantages when used separately, there is
also the possibility of combining them in order to obtain better
results.

Hybrid methods for information recovery assume the use of
additional information from different domains. Therefore, there
can be several possibilities of combinations, i.e., spatiotemporal
methods [17], [27] or spatiospectral methods [28], based on the
idea of making the prediction process learn from information
available in the cloud-free neighborhood of contaminated areas
for the contextual reconstruction of cloud-contaminated areas
in multitemporal multispectral images. There are also methods,
such as in [29], advancing a unified spatial–temporal–spectral
deep CNN for reconstruction, that use information from all three
domains. Solutions developed for pan sharpening (i.e., predict-
ing pixels signatures at higher resolution) are also combining
the spatial and spectral information. In [30], a four-layer CNN
is proposed using a loss function without requiring a reference.

Later, methods based on convolutional networks [31], propos-
ing a new approach to denoising, inpainting, and super-
resolution of hyperspectral image data based on intrinsic
properties of a CNN without any training, or generative
networks [32], implementing a modified unsupervised CNN
context generate model, were explored.

Although using the combined advantages of two or more
methods would result in obtaining results with greater accuracy,
it must be taken into account that, in any combination that
includes the temporal domain, the existence of very recent
preceding images is determined by too many uncontrollable
factors.

In the process of reconstructing a band, the super-resolution
effect can also be encountered if the recovery development
involves all the spectral bands complementary to the band to be
reconstructed, regardless of their spatial resolution. For example,
Rout et al. [16] use multisensor bands as input information to
reconstruct a band in the SWIR domain at a resolution that the
target sensor does not have.

Brodu [33] presents Superres, a super-resolution method for
S2 products based on exploiting both the local consistency
between neighborhood pixels and the geometric consistency of
subpixel constituents across multispectral bands in order to bring
all the bands from 20 and 60 m/pixel down to 10 m/pixel. Starting
from the highest resolution bands, band-dependent information

is separated from information that is common to all bands’
geometry of scene elements. This model is then applied to unmix
low-resolution bands, preserving their reflectance, while prop-
agating band-independent information to preserve the subpixel
details.

Lanaras et al. [34] introduce DSen2 and VDSen2, state-of-
the-art CNNs to perform end-to-end upsampling; these are two
configurations of ResNet architecture, i.e., Deep Sentinel-2 and
a Very Deep Sentinel-2, being trained with low resolution data.
Thus, one has access to a virtually infinite amount of training data
by downsampling real S2 products. They use globally sampled
data over a wide range of geographical locations to obtain a
network that generalizes across different climate zones and land-
cover types and can super-resolve arbitrary S2 product without
the need of retraining. Before [34], there are no significant results
in applying deep learning for super-resolution. A comparatively
shallow three-layer CNN architecture was originally designed
for single-image (blind) super-resolution as introduced in [54] .
They train pan-sharpening networks for Ikonos, GeoEye-1, and
WorldView-2. Similarly, PanNet, a network introduced in [55],
based on the high-performance ResNet architecture, was also
applied on WorldView-2, WorldView-3, and Ikonos. Due to
their performance and relevance as state-of-the-art approaches
for our endeavor, the abovementioned methods Superres and
DSen2, VDSen2 will serve as baseline methods for comparison
and validation.

Methods of synthetic generation of a band are also represented
by those who seek to obtain multispectral images based on
RGB ones. Rangnekar et al. [35] train a conditional adversar-
ial network to learn an inverse mapping from a trichromatic
space to 31 spectral bands within 400–700 nm, an aerial hy-
perspectral dataset. Similarly, Rodríguez-Suárez [36] focus on
conditional generative adversarial networks (CGANs) to achieve
the reconstruction of multispectral images from RGB images.
Different regression network models (convolutional neuronal
networks, U-Net, and ResNet) have been adapted and integrated
as generators in the CGAN and compared in terms of perfor-
mance for multispectral reconstruction. A very comprehensive
work that reviews all the methods of multispectral image en-
hancement from the point of view of super-resolution, noise
reduction, inpainting, or restoration is proposed by Tsagkatakis
et al. [37].

III. PROPOSED CONCEPT

With the primary objective to fully exploit the spectral in-
formation in the interest of reconstructing a missing band of a
multispectral image, this article proposes a method to extract
that information from the concurrent spectral bands of the same
product. This concept is based on the following premises.

1) Multispectral images represent a product describing a
certain area from the earth’s surface containing bands
acquired at different wavelengths. Consequently, there is
a spatial and spectral correlation between bands.

2) Deep neural networks have proven their ability to learn
from the unique representations of various target at-
tributes.
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Fig. 2. Proposed method (UNetBRec) concept for band recovery. The CNN with U shape receives as input all the bands except the one to be reconstructed and
obtains the predicted band at the output.

3) The worst case scenario involves the total absence of a
spectral band, but the existence of complementary spectral
information in the same multispectral image is sufficient,
and no other supplementary data are required.

Starting from these premises, this article proposes a general-
ized method to reconstruct any missing or corrupted band from
a multispectral image. The only condition is the integrity of the
complementary spectral information.

Fig. 2 illustrates the general overview of the method. The
CNN, UNetBRec, receives as input all the spectral bands except
the one to be reconstructed and returns as output a single band
with the same width and height. During the training process, the
network performs a comparison between ground truth and the
generated band to adjust its parameters and obtain a better result.
The method is generalized for each band, the single difference
between the trained models being the bands received as input
and the one used to compare the output. In the case of an L2A
S2 product, there is a set of 12 trained networks; each of them
is used to recover a specific band.

The proposed concept is designed to prevent the need for
additional information, other than the one available in the mul-
tispectral product for which one of the bands is to be recovered.
Consequently, our solution is able to produce the missing band in
a short time by preserving both the spectral and spatial properties
of the product.

The benefit of band reconstruction arises from the subsequent
use of the thorough multispectral product, as required by the
current applications of EO data.

IV. BAND RECONSTRUCTION FOR MULTISPECTRAL IMAGES

The extensive adoption of deep-learning-based methods in
numerous fields demonstrated that problems impossible to solve
with classical methods became approachable and even solvable
using neural networks. One such example is the following situa-
tion: due to the lack of correlation of spectral bands’ distribution,
it was considered unrealistic to reconstruct one band using
the others. However, once neural-network-based solutions were

Fig. 3. Original U-Net architecture, an example for 32 × 32 pixels in the
lowest resolution [38].

used, the opposite was demonstrated, the results obtained being
more than satisfactory and, in some cases, even more eloquent
than the ones obtained using classical methods.

A. Proposed Deep Learning Architecture

U-Net [38] is a state-of-the-art CNN build upon on the “fully
convolutional network” introduced by Long et al. [39]. The main
characteristic of this network is the U -shape architecture (see
Fig. 3) containing a contracting path and an expanding path.
The contracting operation is obtained through pooling operators,
while the expanding is achieved through upsampling operators.
The two branches, down and up, are interconnected through
concatenation operations in order to pass spatial and spectral
information. Therefore, the symmetry between the two parts of
the network is almost perfect.

While the original U-net architecture has been implemented
for the segmentation of neuronal structures in electron micro-
scopic stacks, in this article, we introduce a modified U-Net
architecture called UNetBRec, presented in Fig. 4, to address
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Fig. 4. UNetBRec architecture contains only 14 layers instead of 23 in the original U-Net, meaning that the number of levels on downsizing has decreased from
four to two. The dimensions of 304 × 304 have been chosen experimentally, considering the fact that, placing a smaller dimension as network’s input, one can
afford to diminish the number of layers in the training stage.

the missing band reconstruction challenge. UNetBRec has the
same U-shape structure; the dimensions of the parameters have
changed: the number of layers decreased from 23 to 14, meaning
that the levels on downsizing has decreased from four to two, to
reduce the number of network’s parameters. The input patch
dimensions decreased from 572 × 572 single band to 304 ×
304 × 11 bands. The main adjustment is related to sequential
convolutions that have been settled to 1 × 1 so that the output
will be a single band, with the same dimensionality as the input
ones. The typical architecture of a CNN is followed in the down
branch. The sequence of two 1 × 1 unpadded convolutions, each
followed by a rectified linear unit (ReLU) and a 2 × 2 average
pooling, is repeated during the contracting path, while the ex-
panding path follows a sequence of an upsampling operation, a 1
× 1 convolution, a concatenation with the correspondent feature
map from the contracting path, and two 1× 1 convolutions, each
followed by the ReLU. The upsampling operation is, in fact, a
deconvolution, which may be seen as a transposed convolution.
The last layer is a 1 × 1 convolutional layer used to get to the
desired dimension of the resulting reconstructed band, which is
equal to the input dimension. The strategy of this architecture is
to successfully learn local and global features relevant for band
reconstruction.

In Fig. 4, each box represents a multichannel feature map, with
the number of channels on top and the dimension of feature map
on the bottom. The arrows define different operations, explained
by the legend. The multiplication of the feature channels has
been chosen as a result of multiple experiments.

B. Physics-Aware Multispectral Image Band Reconstruction

Several satellite sensors record images with multiple spectral
bands at different spatial resolutions, the main advantages being:

� simultaneity of spectral band recording;
� illumination similarity between bands;
� atmospheric conditions similarity between bands;
� very precise coregistration;
� acquisition distance similarity between bands.
The reasons behind recording at varying spatial resolution

may be transmission bandwidth restrictions, band designation,
or storage.

S2 is one of the products of Copernicus Sentinels mission,
which uses satellites that record multispectral images with bands
at different spatial resolutions. Bands of S2 product have 10-,
20-, and 60-m resolution. The previously mentioned advantages
apply in this case, thus making it possible for the proposed
solution to rebuild a spectral band. However, it must be taken
into account that the exclusive use of information from the
concurrent spectral bands can generate, in addition to band
reconstruction, an improvement in terms of resolution. Thus, for
60-m-resolution bands, a resolution improvement may occur,
while for 10-m-resolution bands, the quality would be pre-
served due to the presence of multiple bands with the same
resolution.

Another important characteristic of a band is its spectral
signature. In the process of band reconstruction, the preservation
of the signature demonstrates the effectiveness of the applied
method.

The following subsections illustrate and emphasize the im-
provements which the proposed method brings to the results.
Both spectral signature and resolution are analyzed.

1) Reconstruction of 60-m-Spatial-Resolution Bands: S2
has three bands at 60-m resolution, but as we use the Level
2 products, band 10 is not included due to the fact that it does
not contain surface information. The remaining two bands of
60-m resolution are bands 1 and 9.
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Fig. 5. (a)–(f) Two examples of band 1 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 6. (a)–(f) Two examples of band 9 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 5 presents two examples of band 1 reconstruction, em-
phasizing the resolution improvement as all the contours are
more accurate. Moreover, for each example, there is a graph
showing the spectral signature of both initial (blue line) and
reconstructed (red line) bands; besides, the green line highlights
the pixel differences between the two.

Although the spectral signatures are not identical and do not
follow exactly the same pattern, the effect could be explained
by the super-resolution itself. Many similar pixels from the
initial band belonging to a not clearly defined area in the re-
constructed band may have contrasting values in order to define
a delineate clear-cut contour of the objects from the earth’s
surface.

The examples for band 9 prediction (see Fig. 6) also demon-
strate that although the main reason was not the super-resolution,

its effect is present and boosts the improvement of the recon-
structed band. The presence of more details in the reconstructed
scene is also illustrated in the graphs of the spectral signatures,
which highlight both the preservation of the patterns and a
slight modification due to the increase in contrasts between the
neighboring pixels.

2) Reconstruction of 20-m-Spatial-Resolution Bands: The
number of bands with 20-m resolution in S2 products is equal
to six, namely the bands 5, 6, 7, 8A, 11, and 12. Being the
resolution that most of the bands are acquired at and being a very
small difference compared to the highest resolution, 10 m, the
reconstruction is made more accurately. The minor difference
between the initial band and the reconstruction is visible in
terms of brightness, both in spectral signature pattern and band
visualization.
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Fig. 7. (a)–(f) Two examples of band 5 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 8. (a)–(f) Two examples of band 6 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Figs. 7–12 illustrate two examples for each band recovery.
Unlike the 60-m-resolution bands, in the case of 20-m-

resolution bands, from a visual point of view, pixelation dif-
ferences are no longer noticed, and the spectral signatures keep
exactly the same pattern; in some cases, they are even over-
lapped, which means that they are identical from the point of
view of the amplitude of pixel values.

Examples of similar and overlapping spectral signatures of
the two bands can be observed in Figs. 7–10, 11(f), and 12(e).

Although from a visual point of view, it is not noticeable, there
are small differences in the amplitude of pixel values, but when
displayed, the images are calibrated so that the contrasts can

be observed, and small differences remain hidden. Instead, the
spectral signature graphs highlight even the smallest difference
between the value of a pixel of the initial band and that of the
corresponding pixel in the reconstructed one.

Fig. 12(e) and (f) illustrates the greater difference between
initial and recovered bands registered in the spectral signature
graphs but still preserves the pattern. Both the examples imply
higher values of initial band pixels. Taking into account that
the wavelengths of these two bands are the longer ones being
from the SWIR part of the EM spectrum, it may be deducted
that in some cases, although the band will be reconstructed with
success, the amplitude of the pixels may not be as higher as in
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Fig. 9. (a)–(f) Two examples of band 7 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 10. (a)–(f) Two examples of band 8A reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

the original. The visual analysis of the reconstruction does not
unravel the difference.

As highlighted by the examples, the reconstruction of the
bands with 20-m resolution proves to be a success, demon-
strating the preservation of the spectral signature of the band
in question as well as the visual similarity to the original band.

3) Reconstruction of 10-m-Spatial-Resolution Bands: Four
bands of an S2 product have 10-m resolution, namely bands 2,
3, 4, and 8. First three of these bands have wavelengths from
the visual part of the spectrum and are highly used for the
true color representation of the image. The fourth one, band
8, has its wavelength in the NIR part of the EM spectrum and is

approximately centered positioned in the range of wavelengths
available in an S2 product.

Figs. 13– 16 illustrate two examples, each of a certain band
recovery. The examples are from two different S2 products over
disparate parts of Romania that illustrate both urban areas and
agricultural or vegetation areas in order to present as different
contexts as possible.

As regards resolution, it was neither improved nor worsened,
so that the original quality of each band was preserved. Also,
the spectral signature graphs highlight the maintenance of the
pattern, registering small amplitude differences between the
original and the reconstructed.
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Fig. 11. (a)–(f) Two examples of band 11 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 12. (a)–(f) Two examples of band 12 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

The quality of 10-m band resolution reconstruction is very
similar to that of the ones with a resolution of 20 m, so that
the observations regarding the amplitude difference between
the pixels are preserved. At the level of details and pixela-
tion, the visual inspection distinguishes neither differences nor
the spectral signature graphs, as the patterns are preserved.
Spectral signatures only highlight the differences in amplitude,
as can be seen in Figs. 13(e) and 16(e).

Regarding the difference compared to the bands with a reso-
lution of 60 m, it can be mentioned that in the case of those, the
improvement can be seen as a benefit for the subsequent analysis.

Super-resolution was taken into account only considering the
physical characteristics that define a multispectral product, but
it was not an objective in itself. The fact that such a result was
obtained can only encourage further research on this aspect.

V. EXPERIMENTAL RESULTS AND EVALUATION

This section details the implementation aspects: the dataset
selection for training and testing, the stages of experimental
fulfillment, and metrics used to evaluate the proposed method.
Finally, experimental results are presented and analyzed.
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Fig. 13. (a)–(f) Two examples of band 2 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 14. (a)–(f) Two examples of band 3 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

A. Train and Test Datasets

Deep learning algorithms usually assume the existence or
the need to create a dataset for training and testing opera-
tions. However, the method proposed in this article does not
involve such a need, the use of the products obtained by the
sensors of the S2 mission being sufficient. As the method
takes into account the worst case scenario, that assumes the
nonexistence of the band to be reconstructed, the only condi-
tion is that the complementary spectral bands should be avail-
able. Also, in the training stage, it is important to have the

initial band so that the network can learn how to reconstruct
it.

S2 mission involves two satellites, 2A and 2B, placed on
the same orbit, which fly with a phase difference of 180◦ [40].
The images resulted from the sensing activity of the two MSI
identical sensors may be available for usage at different levels
of processing. This work has used Level 2A processed products
acquired by both the sensors for the experimental results. The
locations of the images have been randomly picked, the main
objective being the variety in climate zone and distribution
across the globe. Various patterns of urban areas and agricultural
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Fig. 15. (a)–(f) Two examples of band 4 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

Fig. 16. (a)–(f) Two examples of band 8 reconstruction—visual comparison to emphasize resolution improvement and spectral signature graph to highlight the
pattern preservation and development. In (e) and (f), the initial band is shown in blue, the reconstructed band is shown in red, and the difference between them is
in green.

regions in North Pole or Kyiv, Ukraine (see Table I) are included
in our dataset to prove the efficiency of band reconstruction
regardless of land-cover diversity.

An S2 Level 2A product name is defined by a naming con-
vention and has the following form [41]:

MMM_MSIXXX_YYYYMMDDHHMMSS_ Nxxyy_ ROOO_
Txxxxx_ ProductDiscriminator.SAFE,

where:
1) MMM represents the mission id, naming S2A or S2B;
2) MSIXXX stands for the level or processing (MSIL1C—

Level 1C, MSIL2A—Level 2A);

3) YYYYMMDDHHMMSS represents the sensing date and
time (e.g., 20220323T195051);

4) Nxxyy stands for PDGS processing baseline number (e.g.,
N0301);

5) ROOO represents the relative orbit number, which may
take values between R001 and R143;

6) Txxxxx is used for the tile number;
7) product discriminator represents also a date field and is

used to determine the difference between end user prod-
ucts sensed at the same date;

8) SAFE is the product format.
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TABLE I
S2 PRODUCTS USED FOR EXPERIMENTAL RESULTS

TABLE II
CUSTOM NETWORK SETTINGS FOR EACH MODEL TRAINED

Taking into account this naming convention, Table I shows the
specific products used for training and testing in the proposed
method. The first six columns define the principal fields of
the naming convention, which help to uniquely identify the
products, and the last two columns position the products in the
earth’s geographical space by specifying the city and country.
S2 data can be downloaded for free from the Copernicus Open
Access Hub [42].

Each S2 image has 12 spectral bands, being processed at
level 2A. The 12 bands initially have different spatial resolution;
therefore, in order to have a uniform resolution, we performed
an upsampling operation using the nearest neighbor method to
bring all the bands to a 10-m GSD. The size of each resulting
image is 10 980 × 10 980 × 12.

To create the training dataset, a subset of 10 944 × 10 944
× 12 was taken from each of the two images shown in Table I,
as intended for this purpose. Next, the subset was divided into
patches of 304 × 304 × 12, resulting in a number of 1269
patches from each image. Finally, the sets of patches obtained
from images were concatenated, thus creating a training dataset
of 2592 patches with a size of 304 × 304 × 12.

For testing, each of the images went through the same process
as for training, upsampling, subset selection, and patching pro-
cess, except for the final concatenation. In that way, each image
could be passed through the testing process sequentially.

B. Implementation Details

The proposed method implementation was achieved using
Python 3.6.13 and TensorFlow 2.3.1 for GPU. Training step
was performed on a distributed system containing an Intel(R)
Xeon(R) E5-2620v4@2.10 GHz CPU and eight PCIe-connected
Tesla K80 GPUs, with 12 GB of RAM each.

As the number of bands of an S2 image is 12, we trained 12
models, one for the reconstruction of each band. The networks
were trained having different batch sizes and number of epochs.
Table II displays the corresponding batch number and epochs for
each model. These numbers were chosen experimentally, after
many tries, choosing the ones with better accuracy and lower
loss. The duration of training for one model was about 45 min.

The others parameters were set identically for all the trained
models. The weights were initialized using he_normal [43],
and stochastic gradient descent, through the Adam method [44],
was chosen for optimization. Learning rate was set to 1e-3.
The loss function used was mean square error (MSE) and was
computed between the real band and the reconstructed one.

The filters for the convolutional layers were set in the follow-
ing way: first two had 88 filters, next two 704, following another
two had 1408, next three had 704, another three had 88, one had
11, and the last one had one filter.

For numerical stability, the pixel reflectance values were
scaled so that the resulting interval be [0,. . .,255], according
to the following formula:

p̂ =
p−minx

maxx−minx
, (1)

where p represents the radiance value of a pixel from a band
and x is the input image. The scaling operation was performed
imagewise, before transforming it into a set of 304 × 304 × 12
patches.

C. Evaluation Metrics

In order to quantitatively evaluate the results obtained by the
proposed method, different state-of-the-art indexes that measure
the accuracy of spatial and spectral profiles’ preservation were
used. As a consequence, the reconstruction accuracy can be de-
termined and studied. Most of these metrics have demonstrated
their use in computer science research and were endorsed also
in the remote sensing domain.

1) Root-Mean-Square Error (RMSE): RMSE is a very com-
monly metric used to measure differences between true values
and the ones obtained by an estimator or a model. The formula
that defines RMSE is

RMSE =

√
1

n

∑
(x̂− x)2, (2)

where x̂ is the reconstructed band, x is the initial band, and n is
the number of pixels in a band.

2) Structural Similarity Index Measure (SSIM): SSIM mea-
sures the similarity between two images, x and x̂, by taking into
consideration three comparison measurements: luminance (l),
contrast (c) and structure (s), being generally defined as [45]

SSIM(x, x̂) = l(x, x̂) · c(x, x̂) · s(x, x̂). (3)

Luminance (l) comparison is defined by the formula

l(x, x̂) =
2μxμx̂ + c1
μ2
x + μ2

x̂ + c1
, (4)

where μx is the average of pixel values in x, μx̂ is the average
of pixel values in x̂, and c1 represents a constant defined by
(K1˜L)

2. K1 is a constant << 1 (0.01) and L is the dynamic
range and usually equals 2Nr−1, with Nr being the number of
bits per pixel.

Contrast (c) comparison is defined by the following formula:

c(x, x̂) =
2σxσx̂+ c2
σ2
x + σ2

x̂ + c2
, (5)
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where σx and σx̂ are the variances of x and x̂, respectively. c2
represents a constant defined by (K2˜L)

2.K2 is a constant equal
to 0.03.

The following formula stands for the structure (s) comparison:

c(x, x̂) =
σxx̂ + c3
σxσx̂ + c3

, (6)

where c3 = c2
2 .

As a result, the final formula that defines SSIM is

SSIM(x, x̂) =
(2μxμx̂ + c1)(2σxx̂ + c2)

(μ2
x + μ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
. (7)

SSIM has a predecessor, which is called “universal quality
index” (UQI) defined in [46] and [47]. UQI stands for the special
case of SSIM, where c1 = c2 = 0, but returns unstable results
when the sum of averages or variances is very close to 0.

3) Signal-to-Reconstruction Error (SRE): SRE [34] is a use-
ful metric in the case of images that contain clouds, fog, or other
phenomena that determine high reflectance values. These high
values also generate large absolute reflectance errors. Consider-
ing that this metric measures the error relative to the mean image
intensity, it is an optimal solution to evaluate the differences
between the reconstructed band and the original one. SRE has
the property of compensating the effect generated by the high
reflectance values.

The formula that defines SRE computation between two
bands, x, and its reconstruction, x̂, is illustrated in the following
equation:

SRE = 10 log10
μ2
x

‖x̂− x‖2/n, (8)

where μ2
x is the average of pixel values in x. Resulting values of

SRE are expressed in decibels (dB).
4) Peak-Signal-to-Noise Ratio (PSNR): PSNR is delivered

as a logarithmic quantity and is expressed in dB. It is a very
commonly used metric that expresses a global measurement of
image quality. In comparison with SRE, it is not very suited
to computing errors between images with different brightness
because the peak intensity remains constant [34].

PSNR is defined by the following formula [48]:

PSNR = 10 log10

(
2552

MSE(x, x̂)

)
, (9)

where MSE(x, x̂) is defined as

MSE(X,Y ) =
1

N

N∑
i=1

(Xi − Yi)
2 (10)

standing for mean squared error, being an often used measure
to compute the error function in neural network models.

Optimal PSNR values differ depending on the data type used
to represent the pair of images between which the metric is
computed [49], [50], [51], [52].

5) Spectral Angle Mapper (SAM): The SAM [53] represents
the angular deviation between initial and reconstructed spectral
signatures. SAM values are given in degrees. This metric is
very useful in the case of spectral images because it ignores
brightness, measuring how precise the spectral distribution of a

pixel is respected in the reconstructed band, by comparison with
the initial band.

The formula that defines the computation of SAM pixelwise
is

SAM(x, x̂) = cos−1

⎛
⎝

∑nb
i=1 xix̂i√∑nb

i=1 xi
2

√∑nb
i=1 x̂i

2

⎞
⎠ , (11)

where nb is the number of bands.
As the proposed method compares images with only one

band, the SAM is computed for each pixel, and the final value
represents an average over the whole image.

The metric implementation used in this article was the one
proposed by Müller [56]. The code, implementation details, and
instructions for usage are available on GitHub [57].

D. Results and Discussion

This article introduces a method to restrain the information
contained by a multispectral image in order to reconstruct a
missing band. The performances of UNetBRec are quantitatively
and qualitatively evaluated. For quantitative analysis, state-of-
the-art image reconstruction assessment metrics are computed
for UNetBRec and other latest generation methods in order to
critically study their achievements. The qualitative analysis is
performed by visually comparing the results obtained with the
ground truth.

1) Quantitative Analysis: The main evaluation metrics of our
quantitative comparison are presented in Section V-C, namely
RMSE, SSIM, SRE, PSNR, and SAM. UNetBRec has 12 ver-
sions, one for each band reconstruction. An overall comparison,
as regards used metrics, shows that depending on the resolution
of the band, the image for which it is tested, and the differences
between the reflectance values, the evaluation metrics lie within
an acceptable range in terms of performance. For example, as
can be seen from Table III, in the case of band B9, the RMSE
registers a higher value compared to that of other bands, which
means a bigger error, but the SRE has a value that is among
the best values. This is mainly due to the fact that the SRE
measures error relative to signal strength, which RMSE does
not. For the same reason, the PSNR does not have such high
values, compared to other bands. The SAM is, however, the
metric according to which the spectral signature is preserved
and highlights the good accuracy of the reconstruction.

For each band, the minimum, maximum, and average values
were calculated on the entire test dataset. The networks trained
for bands B11 and B12 have been evaluated to obtain poorer
metric values, but their accuracy remains high, due to the fact
that these two bands are part of SWIR and have wavelengths
quite far from the bands used for their reconstruction. B12, being
right on the edge of this range, records the weakest results at the
average values, but if the minimum values are also observed, it
can be deduced that for some test data, the accuracy is among
the best.

Moreover, the 60-m band reconstruction also encounters
lower metric evaluation, but it also can be explained. Amid
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TABLE III
QUANTITATIVE EVALUATION OF UNETBREC USING RMSE, SSIM, PSNR,

SRE, AND SAM METRICS

reconstruction, these bands benefit from a resolution improve-
ment, so their comparison with the initial bands determines the
differences in metric evaluations.

As baseline methods, the ones proposed by Lanaras et al. [34],
i.e., DSen2 and VDSen2, and by Brodu [33], i.e., Superres,
are used. Although their purpose is different, that of obtaining
super-resolution, the main reasons for the comparison are the
use of the same type of data, S2 images, and the similarity to
a certain extent in terms of approach. The main difference is
defined by the lack of bands to reconstruct in training in the
case of UNetBRec, while the two methods use all the bands to
obtain an improved version from the point of view of resolution.
In conclusion, UNetBRec obtains the desired band using the
complementary ones, while the competition use all the bands to
retrieve super-resolution ones.

Average results over all the test images and all the bands are
displayed in Table IV. B2, B3, B4, and B8 are not included in
this average quantization as the other methods use the 10-m-
resolution bands as grounds to obtain the super-resolution in the
others. The state-of-the-art Superres yields rather poor results,
while DSen2 and VDSen2 perform similarly, with VDSen2
being slightly better in most of the error metrics. UNetBRec

TABLE IV
AVERAGE COMPUTED METRICS COMPARED BETWEEN STATE-OF-THE-ART

METHODS AND UNETBREC

TABLE V
QUANTITATIVE EVALUATION BETWEEN UNETBREC AND STATE-OF-THE-ART

METHODS SUPERRES, DSEN2, AND VDSEN2 OVER RMSE AND SRE METRICS,
BANDWISE

reduces the RMSE with 37% and increases the SRE with more
than 10 dB, thus demonstrating superiority. The SAM error met-
ric is the only exception, encountering a decrease compared with
VDSen2 by 4%, and 1.2% referring to DSen2, but an increase
by 22.5% relating to Superres. The difference in SAM values is
generated by the resolution improvements and comparison with
the initial band. Taking this into account, UNetBRec performs
and generates very satisfactorily regarding the purposed scope,
approaching and even surpassing state-of-the-art methods that
use information of all the bands.

On a bandwise analysis, UNetBRec proves its superiority, as
shown in Table V. Bands B2, B3, and B4 are not included in
this comparison because in the other methods, they remain un-
changed and are used as references to obtain the super-resolution
of the complementary bands.

All methods’ performances vary depending on the band, the
differences fitting in the range of what can be called a satisfactory
performance. Band B5 turns out to register promising error
values along all the methods. This could be explained by the
small wavelength difference between it and bands B2, B3, and
B4, which, having the best resolution, 10 m, contain a lot of
information in both the spectral and spatial domains.

Along all the bands, the superiority of UNetBRec is empha-
sized through error metric results over state-of-the-art methods.

2) Qualitative Analysis: The qualitative analysis of the re-
sults obtained with UNetBRec involves comparing the re-
constructed band with the original one, also visualizing the
difference computed pixelwise between them.

The following examples will highlight two important aspects:
the accuracy of the method on scenes from areas of the globe for
which training was not carried out, such as the North Pole, and
the accuracy on scenes containing atmospheric phenomena, such
as thin clouds. The two examples are representative because they
show niche cases as regards the large amount of high reflectance
values, which cause an increase in the obtained range of pixel
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Fig. 17. Bandwise qualitative evaluation of UNetBRec over a scene from the North Pole.
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Fig. 18. Bandwise qualitative evaluation of UNetBRec over a scene covered by fog and thin clouds in Kyiv, Ukraine.
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values. Thus, these examples represent a strong performance
demonstration of UNetBRec regarding the recovery of a band.

Fig. 17 illustrates a scene from the North Pole, which is ana-
lyzed on each band by comparing ground truth, reconstruction,
and difference bands. Taking into account the discussion on the
quantitative analysis and the calculated errors, the observations
made remain valid as follows.

1) 60-m-resolution bands highlight differences in terms of
the contours of the objects, with the difference image
recording higher values (marked in white) in those areas.

2) SWIR area bands also show a greater difference due to
their isolation in an area of the spectrum where there
are not so many bands to help the reconstruction with a
sufficiently high accuracy.

3) Visual spectrum bands benefit from a reconstruction with
high accuracy, which makes the visualization of the dif-
ference contain many small values (marked in black).

The area most often marked as different is water. It generally
registers very low reflectance values, which in the present case
represents a very large contrast to the values associated with
the considerable area of snow, which surrounds it. These errors
along high-contrast edges usually are generated in cases of
blurred edges or contrast intensification.

Fig. 18 illustrates one example of reconstruction, which is not
influenced by high contrast between the edges of the reflectance
values range. The reconstruction of any of the bands is carried
out with high accuracy, which can be seen from the visualization
of the difference. The method exhibits only slight traces of a
behavior involving large errors along high-contrast edges.

The bands from the NIR and SWIR part of the EM spectrum,
as they are acquired at a longer wavelength, succeed in capturing
information about the earth’s surface even through thin clouds,
the information content being enriched from one band to another.
The rendering of the reconstruction error highlighted by the
difference exhibits low values, highlighting the ability of the
proposed method to recover the missing band from the concur-
rent ones. The difference in content and the high reconstruction
accuracy are the main factors that demonstrate the power and
efficacy of the proposed method.

VI. CONCLUSION

This article provided an efficient and rapid neural-network-
based method to recover a missing spectral band of an S2
product. The data needed to perform the reconstruction were
obtained from the complementary spectral bands. The starting
point of this method was a CNN, namely U-Net. Modifications
consisting in reducing the number of convolutional levels and
changing the dimensions of the parameters used were essential
for its adaptation to our purpose, U-Net being initially used for
segmentation. Each band of a multispectral S2 image involved
training a model intended to reconstruct it. The adapted network,
UNetBRec, demonstrated both quantitatively and qualitatively
its improved effectiveness among baseline methods. Moreover,
this method proved the efficiency of band reconstruction regard-
less of land-cover diversity, our datasets’ scenes being randomly
distributed across the world.

The main advantages of this method are as follows.

1) No labeled datasets are required.
2) It does not require additional information from other sen-

sors or from the same sensor, but at a short time interval.
3) It is an unsupervised method.
4) The corrupt band is not used based on the assumption that

it does not exist.
We stated that it is an unsupervised method that does not

require any labeled datasets due to the fact that the reconstructed
band is learned from the other, existing, noise-free bands.

The following disadvantages may be considered: the existence
necessity of the complementary bands to the one for which the
reconstruction is carried out and the fact that the method it was
not trained and tested multisensor .

Considering the balance between pros and cons of the above
method, future research will focus on the generalization for
multiple sensors and the possibility to derive a super-resolution
method.
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