Neagoe, Iulia und Faur, D. und Vaduva, C. und Datcu, Mihai (2023) Band Reconstruction Using a Modified UNet for Sentinel-2 Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 6739-6757. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3276912. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
10MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10128669/authors#authors
Kurzfassung
Multispectral (MS) remote sensing images are of great interest for various applications, yet, quite often, an MS product exhibits one or more noisy bands, strip lines, or even missing bands, which leads to decreased confidence in the information it contains. Meeting this challenge, this article proposes a UNet-based neural network architecture to reconstruct a spectral band. The worst case scenario is considered, that of a missing band, the reconstruction being performed based on the available bands. Besides the comparison with state-of-the-art methods, both the qualitative and quantitative analyses are fulfilled considering several metrics: root-mean-square error, structural similarity index, signal-to-reconstruction error, peak-signal-to-noise ratio, and spectral angle mapper. The experiments focus on Sentinel-2 open data within the Copernicus program. Various patterns of urban areas, agricultural regions, and regions from North Pole or Kyiv, Ukraine are included in our dataset to prove the efficiency of band reconstruction regardless of land-cover diversity.
elib-URL des Eintrags: | https://elib.dlr.de/201625/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Band Reconstruction Using a Modified UNet for Sentinel-2 Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2023 | ||||||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 16 | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3276912 | ||||||||||||||||||||
Seitenbereich: | Seiten 6739-6757 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Band reconstruction, multispectral (MS) images, remote sensing, Sentinel-2 (S2), UNet | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 14:47 | ||||||||||||||||||||
Letzte Änderung: | 11 Jan 2024 13:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags