Vasilescu, Vlad and Datcu, Mihai and Faur, D. (2023) Sentinel-2 60-m Band Super-Resolution Using Hybrid CNN-GPR Model. IEEE Geoscience and Remote Sensing Letters, 20, pp. 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2023.3296188. ISSN 1545-598X.
PDF
- Published version
3MB |
Official URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10185047
Abstract
Sentinel-2 image super-resolution (SR) has proven advantageous in multiple data analysis pipelines, leading to a more comprehensive assessment of different environment-related metrics. This research aims to provide a method for super-resolving the 60-m bands provided by Sentinel-2 up to 10-m spatial resolution, using Gaussian process regression (GPR). While common GPR methods directly operate on raw data using carefully designed kernels, we propose a convolutional neural network (CNN)-based feature extraction kernel to directly process the input 10-m patches, applied in constructing the elements of the integrated covariance matrices. For each scene, a small number of training patches are sampled to optimize the CNN parameters and to construct the predictive mean function, the latter being further used for predicting super-resolved pixels for new input areas. We prove that our method is a reliable SR mechanism by assessing its performance both quantitatively, using metrics against other methods from literature, and qualitatively, through visual analysis of the results.
Item URL in elib: | https://elib.dlr.de/201623/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Sentinel-2 60-m Band Super-Resolution Using Hybrid CNN-GPR Model | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 20 | ||||||||||||||||
DOI: | 10.1109/LGRS.2023.3296188 | ||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Convolutional neural network (CNN), Gaussian process regression (GPR), Sentinel-2, super-resolution (SR) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||
Deposited On: | 10 Jan 2024 14:22 | ||||||||||||||||
Last Modified: | 19 Jan 2024 16:57 |
Repository Staff Only: item control page