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Abstract— Sentinel-2 image super-resolution (SR) has proven
advantageous in multiple data analysis pipelines, leading to
a more comprehensive assessment of different environment-
related metrics. This research aims to provide a method for
super-resolving the 60-m bands provided by Sentinel-2 up to
10-m spatial resolution, using Gaussian process regression (GPR).
While common GPR methods directly operate on raw data
using carefully designed kernels, we propose a convolutional
neural network (CNN)-based feature extraction kernel to directly
process the input 10-m patches, applied in constructing the
elements of the integrated covariance matrices. For each scene,
a small number of training patches are sampled to optimize the
CNN parameters and to construct the predictive mean function,
the latter being further used for predicting super-resolved pixels
for new input areas. We prove that our method is a reliable
SR mechanism by assessing its performance both quantitatively,
using metrics against other methods from literature, and quali-
tatively, through visual analysis of the results.

Index Terms— Convolutional neural network (CNN), Gaussian
process regression (GPR), Sentinel-2, super-resolution (SR).

I. INTRODUCTION

SENTINEL-2 satellite imaging mission provides contin-
uous high-resolution monitoring, supplying numerous

applications with data presented in the form of 13 spectral
bands with spatial resolutions of 10, 20, and 60 m. Such
applications include monitoring crop areas [1], climate change
assessment [2], vegetation health estimation [3], and man-
agement of natural disasters [4]. While sufficient for some
applications, the 20- and 60-m bands can be enhanced by con-
structing high-resolution versions that incorporate small-scale
features, providing more accurate monitoring and detection for
areas of interest.

A plethora of Sentinel-2 super-resolution (SR) methods have
been proposed in previous years [5], ranging from kriging
methods [6], to inverse imaging problems [7] and to recent
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deep-learning-based methods [1], [8]. While the latter have
proven to generalize well for a variety of environments,
they require extensive training using synthetic data to cap-
ture the wide variety of spatial and spectral relationships.
On the opposite end, previous methods relied on optimizing
their internal parameters separately for each scene, fusing
the information contained in the high-resolution bands with
the radiometric properties of low-resolution ones, along with
incorporating sensor-specific degradation-based operators to
mimic the construction of low-resolution bands.

In this letter, we propose a Gaussian process regres-
sion (GPR) method for super-resolving the 60-m Sentinel-2
bands up to 10-m spatial resolution. The proposed method will
incorporate a feature extractor based on a convolutional neural
network (CNN) to extract high-resolution features, further
used for constructing the covariance matrices through which
the predictive mean can be computed for new input locations.
To the best of our knowledge, this is the first SR method
for Sentinel-2 bands based on GPR. The rest of this letter is
organized as follows. Section II provides a theoretical descrip-
tion of GPR, followed by the proposed method. Section III
discusses the validation process for our model, along with a
comparison to other SR methods. Section IV highlights the
concluding remarks and future developments.

II. METHODOLOGY

A. Gaussian Process Regression (GPR)

Let us consider an unknown function f : X → Y which
we are trying to model using GPs. The set of input points
and their observed output will be denoted as X = {xi }1≤i≤N

and Y = {yi }1≤i≤N , respectively, where xi ∈ X and yi ∈ Y .
Constructing a distribution over function values f (xi ) requires
defining a mean function m(xi ) and a covariance function
k(xi , x j ), formally written as f (X) ∼ GP(m(X), k(X, X)),
where k(X, X) = {k(xi , x j )}1≤i, j≤N denotes the covariance
matrix between all pairs of elements from X. Setting a prior
over function f (usually Gaussian, for regression analysis)
allows for sampling function values at different locations in
its domain, given the mean and covariance functions [9]. For a
set of new input points X∗, the inference of its corresponding
output set Y∗ is performed by defining a joint Gaussian
distribution on the values of f (X) and f (X∗), followed
by conditioning it on the initially known input–output pairs
(xi , yi ), as follows:[

f (X)

f (X∗)

]
∼ N

([
m(X)

m(X∗)

]
,

[
k(X, X) k(X, X∗)

k(X∗, X) k(X∗, X∗)

])
(1)
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f (X∗) | f (X), X, X∗, ∼ N (f∗, cov(f∗)) (2)

f∗ = m(X∗) + k(X∗, X)k(X, X)−1(Y − m(X)) (3)

cov(f∗) = k(X∗, X∗) − k(X∗, X)k(X, X)−1k(X, X∗). (4)

Equation (2) denotes the posterior distribution, while (3)
and (4) give the predictive mean and covariance values for
the new input points X∗. In some scenarios, it is reasonable to
assume the existence of underlying i.i.d. noise ϵ ∼ N (0, σn I )
for observations Y, that is, Y = f (X) + ϵ, which leads to
the adjustment k(X, X) → k(X, X) + σn I in the previous
equations. A prior of m(X) = 0 is usually assumed for
computational ease.

While powerful methods, GPs suffer from a computational
bottleneck associated with the inversion of an N×N matrix (3)
and (4), scaling with the number of points N as O(N 3).
Multiple techniques have been previously developed to find
a good tradeoff between the power of representation and
time complexity for GPR [10], the majority of which is
addressing the characteristics of k(X, X) and its inversion
process. One of the most common techniques works by
constructing a joint distribution over the function values
for a set Z = {zi }1≤i≤M , zi ∈ X , of M ≪ N inducing
points, further used for establishing a family of posterior
distributions by conditioning the prior of f on these M
function values [11], [12]. These latter methods make use of
the approximation k̃(X, X) ≈ k(X, Z)k(Z, Z)−1k(X, Z)T to
reduce the computational expense of computing the predictive
mean and covariance functions, resulting in a complexity
of O(N M2).

An important step in constructing representative GP models
is the choice of covariance (kernel) function k(xi , x j ), which
encodes the similarity between input points xi , x j ∈ X . The
most commonly used covariance function is the squared expo-
nential, defined as k(xi , x j ) = σ · exp (−((∥xi − x j∥2)/2l2)),
which is an isotropic function as it only depends on |xi − x j |.
Most of these functions include a set of hyperparameters θ k

(e.g., the squared exponential kernel has θ k = {σ, l}) which
needs to be tuned s.t. the posterior distribution fits the training
data as good as possible. Titsias [12] provides a way for learn-
ing both the hyperparameters θ k and the inducing inputs Z,
which are considered to be variational parameters during the
maximization of a variational lower bound to the marginal
likelihood. In [11] and [13], the Sparse Variational Gaussian
Process (SVGP) model provides a way to optimize the varia-
tional parameters (hyperparameters + inducing variables) by
following the ascent direction given the natural gradients of
the evidence lower bound (ELBO) of p( f (X)|Y), written in a
form that allows for mini-batch optimization. The SVGP uses
variational inference s.t. p( f (X)|Y) is approximated with a
variational term q( f (X)), which in conjunction with the usage
of inducing variables Z, results in the following maximization
objective:

L =

N∑
i=1

Eq( f (xi )) log(p(yi | f (xi ))) − KL[q( f (Z))∥p( f (Z))]

(5)

which allows for computing the partial derivatives with respect
to the kernel hyperparameters θ k and inducing points Z. Max-

imizing L implies maximizing the first term—optimizing q(·)

s.t. it becomes a good approximation for f (·) on all input loca-
tions X—and minimizing the Kullback–Leibler divergence,
which serves the same goal for the inducing points Z.

B. Proposed Method

The proposed framework is illustrated in Fig. 1. Our
method is based on the previously described SVGP model,
optimized for learning an input–output mapping from 10-m
k × k patches, extracted from available 10-m bands B2, B3,
B4, and B8, to super-resolved 10-m pixels values for 60-m
bands B1 and B9. More precisely, given the 10-m patches,
the model is trained to produce a residual map, which added
over bicubically upsampled 60-m bands should yield valid
10-m predictions. The idea was to retain the radiometric
distribution of the original 60-m bands (through bicubic inter-
polation) while increasing their high-resolution content.

Directly comparing pixel values through common kernel
functions would not yield results robust with respect to
translation and rotation, thus falling short of being a good
proxy for the similarity between different patches. Driven by
these shortcomings, we propose to include in the learning
process an additional feature extractor based on a CNN,
to obtain 1-D representations for 10-m input patches. The
intrinsic characteristics of the convolution allow for obtain-
ing similar embeddings for relatively close spatial regions,
and also for areas exhibiting local similar patterns, driving
these representations to be translation/location-invariant. This
further allows for constructing covariance matrices that better
encode pair-wise similarities between different patches. Let
us denote our neural network function parametrized by θnet
as Tθnet (·) : Rk×k×4

7→ Rde , acting on concatenated k × k
patches from all 10-m bands and computing de-dimensional
embeddings. Given two different inputs xi , x j ∈ Rk×k×4,
their corresponding entry in the covariance matrix is now
computed as k(T (xi ), T (x j )), where k(·, ·) is chosen to be the
commonly used squared exponential. The set of parameters to
be optimized is now extended as θ = {θk, θnet}, which, along
with the inducing point Z, will be modified according to the
ascent direction of the loss described in (5).

To optimize the previously discussed set of parameters, the
model was trained in a reduced-resolution context by gen-
erating synthetic input–output pairs, with spatial resolutions
of 60, and 10 m, respectively. Given a set of 10-m input
bands X10 ∈ RH×W×4, one can simulate the degradation
process by a factor of 6 using the sensors’ modulation transfer
function (MTF), which encompasses a depth-wise convolution
operation between X10 and Gaussian kernel gσ with vari-
ance σ , followed by a depth-wise convolution with a 6 × 6
averaging filter d, applied with stride 6

X10 ↓6= MTF(X10) = (X10 ∗ gσ ) ∗ d ∈ R
H
6 ×

W
6 ×4 (6)

where X10 ↓6 denotes the simulated 60-m bands, and the
variance for the Gaussian kernel is chosen as σ = 3,
following the protocol described in [14]. For a k × k ×

4 patch extracted from X10 ↓6, the prediction target was
chosen to be the corresponding center pixel from 60-m bands
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Fig. 1. Proposed SR method for Sentinel-2 60-m bands. Training points xi were generated using a degraded version of the 10-m bands, while the residual
values yi extracted from 60-m bands were taken as output. The GPR model (including Tθnet ) is trained to approximate the mapping between 60-m pixels
from degraded 10-m bands to 60-m pixels in the original 60-m bands. The inference phase utilizes this learned mapping to obtain 10-m predictions for the
super-resolved 60-m bands, taking as input data 10-m patches x∗ and applying the previously optimized algorithm to compute the residual values f∗.

(see Fig. 1 for illustration of the process). Since the model
predicts residual values to be added over bicubically magni-
fied low-resolution bands, the target values were constructed
by first degrading the 60-m bands (using (6)), followed by
applying ×6 bicubic upsampling and subtracting the result
from the original 60-m bands.

For each scene, a number of patches have to be sampled for
training the SR model, balancing the representational power
and the computational complexity of k(X, Z). Given that these
N training points should be as representative as possible for
the current scene, we propose a sampling process based on per-
patch variance, to avoid near-flat areas: 1) compute the vari-
ance of all p × p nonoverlapping 60-m patches; 2) normalize
each to their sum and construct a discrete probability distri-
bution over their center locations by assigning the normalized
variances to their probabilities; and 3) sample N points from
the constructed distribution to serve as training data.

III. EXPERIMENTS

A. Sentinel-2 Data and Evaluation Metrics

To validate the performance of our model, we used Level-1C
products provided by Sentinel-2, each spanning an approx-
imate area of 100 × 100 km2. Three areas were selected
for performance assessment, further referenced by their
geographic location: Bucharest, Romania1; coastline of the
Tyrrhenian sea, Italy2; Dilo, Ethiopia.3 As for the numerical
evaluation framework, we adopted Wald’s protocol [15] for
assessing the performance in reduced-resolution conditions.

1S2A_MSIL1C_20210823T090601_N0301_R050_T35TMK_20210823T1
12038.

2S2A_MSIL1C_20220323T095031_N0400_R079_T33TWE_20220323T1
04033.

3S2A_MSIL1C_20161230T074322_N0204_R092_T37NCE_20161230T07
5722.

This coincides with how we create our synthetic training data,
taking the 60-m bands as targets and the degraded 10-m bands
as inputs. Since the target consists of 60-m spatial resolution
data, we further denote this process as 360–60 m SR. Our
target represented a residual value, which, added over the
bicubically upsampled 60-m bands, yielded the 10-m super-
resolved response. Before any processing, all bands were
divided by their corresponding maximum value. To mea-
sure the error between our prediction and the original
60-m bands, we used as evaluation metrics root-mean-square
error (RMSE), signal-to-reconstruction error (SRE), and spec-
tral angle mapper (SAM).

B. Performance Comparison and Analysis

For the SR framework presented in Fig. 1, we choose
the following architecture for the CNN implementing fea-
ture extraction Tθnet(·): three 2-D convolutional layers, with
16–32–64 filters of spatial dimension 3 × 3, followed by
two fully connected layers with 256–128 units (de = 128).
ReLU activation is used after each layer, except for the
last one. The simplicity of the chosen architecture is moti-
vated by two factors: the use of relatively small patches
for training—to avoid taking into account redundant spa-
tial details for prediction—and to bypass the possibility of
overfitting. Squared exponential is used for measuring the
distance between two 128-D embedding vectors. For each of
the three Sentinel-2 scenes, we trained a different SR model
by sampling N = 8000 input–output pairs, from which we
selected M = 200 inducing points by applying k-means on all
N sampled points, selecting the k = M centroids as our initial
Z values. The models were optimized using 10k iterations
of the L-BFGS-B algorithm [16] to adapt all parameters θ .
We used patches of size 13 × 13, as this resulted in the
best performance. Several methods were used to compare
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TABLE I
RESULTS ON REDUCED-RESOLUTION EVALUATION FOR 360 → 60 m SR

Fig. 2. Results on full-resolution evaluation for 60 → 10 m SR. The illustrated super-resolved images cover an approximate area of 6 × 6 km2, with the
zoomed-in regions covering 1 × 1 km2. The first, third, and fourth rows represent results for band B9, while the second is for band B1. The first area is
extracted from the Romania tile, the next two from Italy, and the last one from Ethiopia.

our model’s performance to: bicubic upsampling, SSSS [7],
DSen2, and its deeper version VDSen2 [8] and ATPRK [6].
It is important to note that all numerical evaluations were per-
formed by excluding the N sampled training points, ensuring
a fair comparison between methods.

Numerical outcomes for reduced-resolution evaluation
(360 → 60 m SR) are presented in Table I, for all methods and
separately for each Sentinel-2 area. All results are reported in
the original range of values (nonnormalized), for each band.

Our method resulted in the best performance in all three
areas for band B9, followed by ATPRK with the second-
best results. On band B1, the proposed method gave the best
performance on super-resolving Italy and Ethiopia tiles, while
achieving the second-best performance for the Romania area,
being surpassed by ATPRK. To investigate this, we measured
the Pearson correlation between our prediction and ATPRK’s
on band B1, and the available 10-m bands. This resulted in
a mean coefficient of 0.625 for ATPRK and 0.547 for ours,
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TABLE II
QNR [%] ↑ FOR FULL-SCALE SR 60 → 10 m

the main difference coming from band B4 where ATPRK
resulted in a coefficient of 0.977, while ours in 0.728. Since
band B4 is representative of urban areas, along with vegetation
crops, and since Romania tile is highly reflected in these
characteristics, we concluded that an increased performance
for ATPRK was achieved through the ease of controlling
its correlation with other 10-m bands. Therefore, ATPRK
may be a better fit in the case of areas highly represented
by the specifics of an available 10-m band, while falling
short in environmentally heterogeneous areas, where linear
combinations of these 10-m bands are not sufficient. Note that
the results obtained by SSSS for this band are fairly similar to
the ones obtained through bicubic interpolation, indicating a
deviation from the reflectance distribution of the original band.
DSen2 takes third place in almost all evaluations, surpassing
its deeper version VDSen2 by a large margin, showcasing
better generalization.

In the case of full-scale SR, that is, applying the previous
algorithms on the original 10-m bands, the evaluation relies
solely on visual inspection for the predicted bands. While any
numerical evaluation for SR with no reference can lead to
divergent conclusions, several efforts have been conducted to
develop such evaluations. One of them is quality no-reference
(QNR) [17] which combines spatial and spectral distortion in a
single metric, extended in [14] for S2 SR. Table II presents the
QNR for full-scale SR, given as percentages. Our method and
ATPRK result in the best performances with, however, a very
small difference between them. Some visual results sampled
from the three scenes are presented in Fig. 2, along with
the 10-m RGB representation for detailed comparison. DSen2
results in somewhat blurry details, especially for the last,
partially clouded area from the Ethiopian desert. SSSS caused
fairly different radiometric distributions for band B1, relative
to the original bands, supporting the high RMSE magnitudes
for reduced-resolution evaluation from Table I. Our method
and ATRPK obtained the best overall visual results, aligning
with the observed high-frequency details in the 10-m RGB
images and with the results from Table II, thus validating
the quality of induced high-resolution information. Finally,
we would like to enhance that, even if the QNR can sometimes
provide a proxy for the quality of SR results, not relying on a
reference image may lead to inconsistent comparisons during
the evaluation phase. Thus, greater emphasis should be placed
on evaluation protocols that incorporate reference data.

IV. CONCLUSION

In this research, we proposed a Sentinel-2 60-m band
SR method using GPR based on a CNN feature extractor.

Our method was optimized on synthetically degraded image
patches and was tested in degraded and full-resolution con-
texts, obtaining top performance in both quantitative and
qualitative evaluations. The main drawback of our system is
given by the necessity of being optimized separately for each
scene, which could otherwise contribute to significant growth
of the covariance matrix, leading to impractical solutions.
Future advancements cover the development of techniques
aimed at increasing the generalization capabilities, for the
same model to be used on multiple areas and the use of
predicted covariance values in a postprocessing step targeting
high-covariance regions.
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