Vasilescu, Vlad und Datcu, Mihai und Faur, D. (2023) Sentinel-2 60-m Band Super-Resolution Using Hybrid CNN-GPR Model. IEEE Geoscience and Remote Sensing Letters, 20, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2023.3296188. ISSN 1545-598X.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10185047
Kurzfassung
Sentinel-2 image super-resolution (SR) has proven advantageous in multiple data analysis pipelines, leading to a more comprehensive assessment of different environment-related metrics. This research aims to provide a method for super-resolving the 60-m bands provided by Sentinel-2 up to 10-m spatial resolution, using Gaussian process regression (GPR). While common GPR methods directly operate on raw data using carefully designed kernels, we propose a convolutional neural network (CNN)-based feature extraction kernel to directly process the input 10-m patches, applied in constructing the elements of the integrated covariance matrices. For each scene, a small number of training patches are sampled to optimize the CNN parameters and to construct the predictive mean function, the latter being further used for predicting super-resolved pixels for new input areas. We prove that our method is a reliable SR mechanism by assessing its performance both quantitatively, using metrics against other methods from literature, and qualitatively, through visual analysis of the results.
| elib-URL des Eintrags: | https://elib.dlr.de/201623/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
| Titel: | Sentinel-2 60-m Band Super-Resolution Using Hybrid CNN-GPR Model | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Juli 2023 | ||||||||||||||||
| Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| Band: | 20 | ||||||||||||||||
| DOI: | 10.1109/LGRS.2023.3296188 | ||||||||||||||||
| Seitenbereich: | Seiten 1-5 | ||||||||||||||||
| Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
| ISSN: | 1545-598X | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Convolutional neural network (CNN), Gaussian process regression (GPR), Sentinel-2, super-resolution (SR) | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||
| Hinterlegt am: | 10 Jan 2024 14:22 | ||||||||||||||||
| Letzte Änderung: | 19 Jan 2024 16:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags