Datcu, Mihai and Huang, Zhongling and Anghel, Andrei and Zhao, J. and Cacoveanu, Remus (2023) Explainable, Physics-Aware, Trustworthy Artificial Intelligence: A paradigm shift for synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine (GRSM), 11 (1), pp. 8-25. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/MGRS.2023.3237465. ISSN 2168-6831.
Full text not available from this repository.
Official URL: https://ieeexplore.ieee.org/document/10035918/authors#authors
Abstract
The recognition or understanding of the scenes observed with a synthetic aperture radar (SAR) system requires a broader range of cues beyond the spatial context. These encompass but are not limited to the imaging geometry, imaging mode, properties of the Fourier spectrum of the images, or behavior of the polarimetric signatures. In this article, we propose a change of paradigm for explainability in data science for the case of SAR data to ground explainable artificial intelligence (XAI) for SAR. It aims to use explainable data transformations based on well-established models to generate inputs for AI methods, to provide knowledgeable feedback for the training process, and to learn or improve high-complexity unknown or unformalized models from the data.
Item URL in elib: | https://elib.dlr.de/201622/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Explainable, Physics-Aware, Trustworthy Artificial Intelligence: A paradigm shift for synthetic aperture radar | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | February 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Magazine (GRSM) | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 11 | ||||||||||||||||||||||||
DOI: | 10.1109/MGRS.2023.3237465 | ||||||||||||||||||||||||
Page Range: | pp. 8-25 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 2168-6831 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Explainable AI, SAR data | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Deposited On: | 10 Jan 2024 14:07 | ||||||||||||||||||||||||
Last Modified: | 10 Jan 2024 14:07 |
Repository Staff Only: item control page