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Abstract—The recognition or understanding of the scenes
observed with a SAR system requires a broader range of cues,
beyond the spatial context. These encompass but are not limited
to: imaging geometry, imaging mode, properties of the Fourier
spectrum of the images or the behavior of the polarimetric
signatures. In this paper, we propose a change of paradigm for
explainability in data science for the case of Synthetic Aperture
Radar (SAR) data to ground the explainable AI for SAR. It aims
to use explainable data transformations based on well-established
models to generate inputs for AI methods, to provide knowledge-
able feedback for training process, and to learn or improve high-
complexity unknown or un-formalized models from the data.
At first, we introduce a representation of the SAR system with
physical layers: i) instrument and platform, ii) imaging formation,
iii) scattering signatures and objects, that can be integrated with
an Al model for hybrid modeling. Successively, some illustrative
examples are presented to demonstrate how to achieve hybrid
modeling for SAR image understanding. The perspective of
trustworthy model and supplementary explanations are discussed
later. Finally, we draw the conclusion and we deem the proposed
concept has applicability to the entire class of coherent imaging
sensors and other computational imaging systems.

Index Terms—SAR image understanding, explainable artificial
intelligence, deep neural networks, knowledge inspired data
science

I. MOTIVATION AND SIGNIFICANCE

The Earth is facing unprecedented climatic, geomorpho-
logic, environmental or anthropogenic changes, which require
global scale, long term observation with Earth Observation
(EO) sensors. SAR sensors, due to their observation capability
during day and night and independence on atmospheric effects,
are the only EO technology to insure global and continuous
observations. Meanwhile, the SAR observations of Sentinel-1
satellites in the frame of the European Copernicus program,
are worldwide freely and openly accessible. This is immensely
enlarging the SAR Data Science and applications, covering
a multitude of areas as: urbanization, agriculture, forestry,
geology, tectonics, oceanography, polar surveys, or biomass
estimation, only to enumerate a few. Copernicus Open Access
Hub provides more than 457.59 PB data of satellites covering
the Earth for more than 570,000 users all around the world.

SAR is a pioneer technology in the field of computational
sensing and imaging, of which the imaging mechanism is to-
tally different from optical sensors. A radar instrument carried
by an airborne or spaceborne platform illuminates the scene by
side-looking or forward-looking, which allows to discriminate
objects in the range direction. As the platform moving along
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Fig. 1: A simple illustration of how SAR images the world
(Stripmap Mode). SAR society is facing the big data challenge
but with limited ground truth. In the meanwhile, the knowledge
of SAR is equally important. This is also the motivation of the
physical layers in this paper.

its track, the SAR sensor is constantly transmitting a sequence
of chirp signals and receiving echos reflected from objects
on the ground, as depicted in Fig. [II When recording all
individual acquisitions with a short physical antenna and
mathematically combining them into a synthetic image, a
much larger synthesized aperture is formed. This allows high
capacity to distinguish objects in azimuth despite a physically
small antenna [1]]. A high resolution “image” can be processed
by applying SAR focusing principle, e.g., matching filtering
[2].

A deluge of SAR sensors have increased the data availabil-
ity for various SAR applications. The allure of data-driven
learning stems from the ability of automatically extracting ab-
stract features from large data volumes [3[]-[6]], and therefore,
many deep learning studies for SAR applications have been
developed in recent years [7]|—[10]. Current popular paradigm
predominantly follows the blue part in Fig. |2| (a), where SAR
image data is all that is required to operate an intelligent
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Fig. 2: a The conventional data-driven paradigm for intelligent SAR image understanding based on deep neural networks and
the proposed paradigm shift integrated and interacted with physical knowledge of SAR. b A bridge can be imaged as multiple
bright lines, similar as a couple of bridges imaged in the other SAR image, depending on the observation parameters and

orientations. This positions the load and outmost difficulty of
in the SAR image.

network. In addition to data, however, the physical model and
principles of SAR sensor should not be neglected. In the upper
example of Fig. [] (b), A bridge over a placid river that is
illuminated perpendicular to its primary orientation appears as
many brilliant lines, resembling the lower SAR image in which
several bridges are imaged from a different viewing angle. The
phenomena can be explicable by multi-path scattering [I1]],
[12], as illustrated in Fig. 2] (c). Apart from the direct scattering
from the bridge, the double bounce reflection between the
bridge and water or vice versa occurs at the corner reflector
spanned from the smooth vertical bridge facets facing the
sensor and the water surface. In addition, the triple-bounce
reflection and maybe some five-path scattering would happen
between the horizontal plane of bridge and water surface.
Thus, SAR image implies the causality of multi-path scattering
phenomena and object characteristics. This positions the load
of SAR image understanding, and the outmost challenge of
data science, as new and particular paradigm of Artificial
Intelligence (Al).

SAR image understanding. ¢ The multipath scattering formation

So far, some researches have discussed the paradigm that
attempts to bring scientific knowledge and data science models
together, applied to a broad range of research themes such as
partial differential equation solving and Earth sciences
[14]-[16]. In particular for SAR community, however, this
topic has rarely been systematically analyzed and illustrated.
Thus, we aim to prospect the hybrid modeling paradigm for
intelligent SAR image understanding, where deep learning
is integrated and interacted with SAR physical models and
principles, to achieve explainability, physics awareness, and
trustworthiness.

Explainable Al is a broad concept. A scientific understand-
ing of explainability is the capacity to clarify the results
in the context of domain knowledge. The algorithms still
remain a black box. A different approach is the algorithmic
explainability. This is constructed such that the results of
the used model can be described algorithmically. To obtain
a higher degree of explainability, we aim at the synergy
of the paradigms: algorithmic and scientific explainability.



ACCEPTED VERSION

a Full aperture
—>

<+— Sub-aperture
.'E

=1
o :-';'Azirnuth direction

e g
=

Target

+ moving platform

Transmitter
Horizontal ] N N
Vertical 1] 1] 1
Receiver
Horizontal AHH AHV /\HH ,\HV HH
Vertical A Y AVH AW AR

S & ow

+ polarimetric sensor

b

R: sub-look 1
8 G: sub-look 2
# B:sub-look 3

or

physical params:

Doppler centroid, beamwidth, Entropy,
height, incidence angle, etc.

Fig. 3: Physical layer (i): Sensor and Platform. a: The moving platform creates Doppler variations and synthesizes large virtual
aperture; PoISAR transmits and receives diverse polarized wave, and SAR polarimetric characteristics are depicted. b: Based
on the physics behind the platform and sensor, the physical layer produces SAR specific representations such as sub-aperture
synthesis image and polarimetric feature, with specified physical parameters.

Algorithmic explainability lies in the guarantee of transparency
to understand how the machine learning algorithm works by
participation of SAR physical models and principles. Scientific
explainability ensures the physical consistency of Al output, as
well as learning of trustworthy results with physical meaning.

To ground this, we first lay out a representation of SAR
physical layer in the context of SAR domain knowledge, as
presented in Section [lI} Further, we describe how to integrate
and interact them with popular neural networks to build a
hybrid and translucent model for SAR applications using illus-
trative examples, demonstrated in Section [T} The perspective
of trustworthy models and supplementary explanation for SAR
community are discussed in Section[[V]and [V] The conclusion
and perspectives are finally given in Section

II. SAR PHYSICAL LAYERS

Other than the neural network layers equipped with a
number of learnable parameters, SAR physical layers are ones
embedded with physical knowledge of SAR, well-established,
interpretable, and supported by domain theories. The concept
of ’physical layer” apart from “neural network layer” arose in
literature [16] to make the model more physically realistic. As
motivated in Fig.[I] three SAR physical layers are highlighted
specific for SAR applications in this paper, i.e., (i) sensor
and platform: referring to antenna characteristics and moving
satellite/aircraft, (ii) imaging system: figuring image formation
with focusing process and (iii) scattering signature: reflecting
the physical properties of terrain and objects.

A. Sensor and Platform

Fig. 3] demonstrates the physical layer of sensor and plat-
form that indicates the physics behind the SAR acquisition
principle, such as aperture synthesizing with moving platform
and various characteristics of antenna.

Existing spaceborne EO SAR missions work in a monostatic
or quasi-monostatic configuration. The simplest illumination
mode of a SAR system is the stripmap mode in which the
antenna pointing direction is constant throughout the acqui-
sition, as shown in Fig. 3] a. The moving platform leads to
a sliding Doppler spectrum that impacts the complex SAR
image. Knowing the behaviour of the Doppler centroid to
create sub-looks is essential for exploiting look angle diversity
of the input data, especially for very high-resolution SAR
images.

It is well-known that in high-resolution SAR image where
the signals are performed over a broad bandwidth and wide
angular aperture, the targets are no longer isotropic and non-
dispersive. Instead, it is more plausible to infer that the
target’s backscattering is dependent on illumination angle
and frequencies [17]. The sub-aperture processing can be
applied to analyze the target scattering variations. Fig. [3] b
gives an example of a synthesized pseudo color SAR image
via sub-aperture processing. The complex-valued SAR image
is first transformed to the azimuth spectral domain by a
one-dimensional Fourier transform. Then, the full Doppler
spectrum is equally split into three intervals, named sub-
apertures or sub-looks, each containing 1/3 range of azimuth
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Fig. 4: Physical layer (ii): Image Formation. a. Targets are characterized by sliding bandpass filtering in the Fourier domain. b.
On the basis of image formation principle and target scattering model, the physical layer generates the rich target description

with physical meaning.

angles. Finally, the three sub-apertures are transformed back
to time-domain using an inverse Fourier transform, coded as
the R, G, and B channels, respectively. Red, Green, and Blue
targets respond mainly on the first, second, and third sub-looks,
respectively, whilst gray targets indicate that they respond
equivalently in different sub-looks. The pseudo-colored image
well demonstrates the particular behavior of some targets.
Given the precise knowledge of the parameters related to
Doppler variations (e.g., orbit, azimuth steering rate, radiation
pattern, incidence angle), the physical layer can generate sub-
look data deterministically and there is no need to design
a neural network that should learn to create sub-looks from
various types of SAR training data.

Sensor characteristics, such as polarization, interferometry
and tomography, construct physical layer as well. Fig. [3]
b presents a Pauli pseudo RGB image, where R, G, and
B channels are formed with |HH — VV|?, 2|HV|?, and
|H H+VV|?, respectively, indicating the polarimetric relation.
Several physical layers can be stacked to represent rich physics
of SAR sensor and platform. Early in literature [|18]], the diver-
sity in the polarimetric features with the azimuthal look angle
was exploited. Thus, the moving platform and polarimetric
sensor are both characterized. Similarly, the stacked physical
layers can represent polarimetric and interferometric properties
of PolInSAR data, or any other combinations.

B. Imaging System

The second physical layer we suppose delineates the physics
behind SAR image formation with an imaging system. The
selected exemplars are illustrated in Fig. [

A pulse-based radar or a frequency modulated continuous
wave (FMCW) radar is usually used in a SAR system,
where a range profile is obtained for each transmitted/received
waveform, either by range compression in the case of a pulse-
based radar or by applying a Fourier transform to the beat
signal in the case of an FMCW radar [19]. By a coherent
processing of the range profiles, the azimuth focusing process
outputs a SAR image representing a two-dimensional complex
reflectivity map of the illuminated area. SAR processing,

taking a simple point target as example, aims to collect the
dispersed signal energy in range and azimuth into a single
pixel. Many traditional imaging algorithms are in terms of a
Fourier synthesis framework [20]], as such, Fourier transform
provides a specific physical meaning for SAR image. This kind
of physical layer assists Al model to better depict the target
scattering beyond the “image” domain.

Fig. [] (a) first shows a simple time-frequency analysis of
target with short-time Fourier transform [21]], [22], charac-
terizing the backscattering intensity variations in 2-D range
and azimuth frequency domain. Four kinds of backscattering
behaviors observed in SAR were defined in literature [23]], re-
lated to different objects shown in Fig. 4] In the high-resolution
case (wide bandwidth chirp signal and broad angular aperture),
the complex amplitude of a target is frequency and aspect
dependent [17]]. Thus, the image formation can be extended to
four dimension (called hyperimage) with wavelet transform,
providing a concise physically relevant description of target
scattering. This frequency and angular energy response pattern
is proved useful for discriminating different scatterers, offering
valuable prior information to AI model, depicted in Fig. @ b.

C. Scattering Signatures of Objects

Thirdly, we introduce the physical layer regarding the scat-
tering signatures of objects, in which the causality of target
characteristics and scattering behaviors is involved.

For optical images, what you see is what you receive, that
is, the objects depicted on the optical image are in accord
with human cognition. Targets in SAR images are reflected by
scattering characteristics, yet they include a wealth of physical
information that the human eye cannot immediately identify.
Fig. 5] a shows example of two typical SAR targets of bridge
and building. The scattering phenomenon that shows several
parallel lines over the river can be interpreted as single, double,
and multiple scattering of the bridge based on the domain
knowledge. The building, with scattering signatures of layover,
shadow, single and secondary scattering in the high-resolution
SAR image, can also be reflected as only layover and shadow
[24]], depending on the building orientation and shape. Similar
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Fig. 5: Physical layer (iii): Scattering Signatures of Objects. a. The Golden Gate Bridge revealing multipath scattering
characteristics in a Gaofen-3 quad-pol SAR image, and a typical single building representing different scattering regions
in a high-resolution (Im) SAR image [24]. b. The scattering mechanisms indicated by the H/cv plane for full-polarized SAR
data point out the land-use and land-cover classes [25]. ¢. The physical layer describes the relationship and reasoning between
the scattering characteristics seen in the SAR image and the object’s features, such as its shape, structure, or even semantics.

research by Ferro et al. [260] investigated the relationship
between double bounce and the orientation of buildings in
VHR SAR images. Fig.[5|b demonstrates the relations between
the scattering mechanism of H/a plane and the semantics
of land-cover and land-use classes [25]]. Likewise, one can
deduce the scattering center position and the specific shape
of distributed target from a SAR image by applying some
scattering models [27].

The conventional data-driven convolutional neural network
can capture the image contents as we “’see” in the SAR image,
whereas it is not equipped with the ability to “interpret” the
scattering phenomenon as we discussed before. This indicates
the knowledge gap between SAR scattering signatures and hu-
man vision cognition. The physical layer delivering semantic
understanding behind the SAR scattering signature permits a
more thorough interpretation of the SAR image. As shown in
Fig. [f] ¢, the physical layer defines the association between
the scattering characteristics of a SAR image and the object’s
qualities, such as shape, structure, or semantics. It can be
written as an objective function or a regularization term that
constrains the training of neural networks. This will improve
the intelligence of Al model to master some causality between
scattering signatures and the object nature.

III. HYBRID MODELING WITH SAR PHYSICAL LAYERS

The integration and interaction of neural network layers
and physical layers construct the hybrid modeling for SAR
image interpretation. In view of algorithmic explainability, the
explainable physical models and domain knowledge improves
the transparency. For scientific explainability, the hybrid mod-
eling ensures the physical meaning of output in physical
layers and the prediction can maintain the physical consis-
tency. In this section, we demonstrate several hybrid modeling

approaches with SAR physical layer to achieve explainability
and physics awareness.

A. Insert for Substitution

The introduced physical layer can be inserted in a deep
neural network for substitution, extracting explainable and
meaningful features, either as the input of a DNN or fused
with DNN features in intermediate layers. A common way is
to insert a physical layer into the input layer to obtain the
polarimetric features for PoOISAR image classification, includ-
ing the elements of coherency matrix, Pauli decomposition
features, etc , . Similarly, the sub-aperture images are
generated as the input for target detection [33]. The other
usage of physical layer is for feature fusion, where the features
obtained by well-established physical model and deep neural
networks are combined [34], [35].

Our recent work, a deep learning framework named Deep
SAR-Net (DSN) , addressed both aspects that inserts the
physical layer into the input and the intermediate position of
deep model. As shown in Fig. [6] DSN was proposed for clas-
sifying SAR images with complex values. Instead of the entire
data-driven method, i.e. the complex-valued convolutional
neural networks (CV-CNN), the designed DSN encompasses
three shallow neural network modules and two physical layers.
The first physical layer generates the high-dimensional radar
spectrogram based on time-frequency analysis. The second one
handles the features of the 2-D projection along the frequency
axises to maintain the location constraint, making it possi-
ble to be fused with spatial features from intensity image. DSN
outperformed CV-CNN especially with limited labeled training
data, and had a remarkable performance in discriminating the
man-made target scenes compared with the traditional CNN. It
demonstrates the Fourier process on single-look complex SAR
image embedded the knowledge like synthesizing the antenna
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well characterizes the physical property of SAR target, and
the usages of physical layer cut down unnecessary parameters
in neural network layers to improve the model performance
with limited ground truth.

B. Compensation for Imperfect Knowledge with Feedback

In condition of unknown/inconclusive physical models or
incomplete knowledge, it is difficult to extract perfect physical
parameters or physical scattering characteristics of SAR via
model-based methods. For instance, obtaining the polarimetric
features from dual-pol, or even single-polarized SAR image.
Thus, the physical layer interacted with deep neural network
take effect.

1) Target Character Identification:

Some researches have analyzed the energy response pattern
in frequency dimensions of target varied in SAR image,

and discussed the nonstationary targets [18], [36]. Spigai
et al. pointed out four canonical targets with a rough
definition shown in Fig. E| a. However, it remains unknown
for many complicated scene and objects. Fig. [7] show our
related work of using physical layer and deep neural network
for compensation of imperfect knowledge. The first is the
unsupervised hierarchical deep embedding clustering based
on time-frequency analysis (HDEC-TFA) [29], which was
proposed to automatically characterize the radar spectrogram
(or the sub-band scattering pattern defined in [29]) basically
in urban area, discovering the various scattering pattern more
than the four specific classes defined in [23]. It offered a
new perspective to describe the physical properties of single-
polarized SAR. Furthermore, we used two stacked physical
layers to obtain the polarimetric and time-frequency patterns
and analyzed with deep neural network in reference [37].
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Fig. |8| demonstrates the result compared with the polarimet-
ric physical model. The SOLEIL synchrotron in France, shown
as the round building in the Google Earth remote sensing
image, is surrounded by three different shapes of buildings.
The HDEC-TFA method can capture the special characteristics
of the architectures even in single HH channel SAR image, as
much as the physical model based method GD-Wishart [38]
on quad-pol SAR. Some other man-made targets examples
characterized by time-frequency model with neural networks
are given in [39]. Our experiments in demonstrated
the trained model varies with different imaging conditions
since the sub-band scattering pattern is influenced by several
imaging parameters, which should be taken into consideration
when transferring the Al model to other situations.

2) Polarimetric Parameter Extraction:

By transmitting and receiving waves that are both horizon-
tally and vertically polarized, the full-pol SAR image captures
abundant physical characteristics of the imaged objects that
can lead to various physical parameters. In contrast, single-
pol and dual-pol SAR data are less informative for physical
feature extraction. If only one polarization channel is obtained,
one cannot derive the other polarization channels in principle.
Once the objects are known, i.e., once the characteristics of
targets such as geometry, surface roughness, etc, are identified,
deep learning can be employed to transfer the knowledge
learned from physical models to reconstruct the physical
parameters of objects. As shown in Fig. [7]b, Zhao et al.
proposed a complex-CNN model to learn physical parameters
(entropy H and « angle) with transfer learning from single-pol
and dual-pol SAR data, supervised by features obtained with
a physical layer. Some similar studies include but not limit to
[40], [41]). Song et al. addressed “radar image coloriza-
tion” issue to reconstruct the polarimetric covariance matrix
with a designed deep neural network, where the supervision
was also generated with a physical layer.

When training a data-driven deep neural network, some

physical consistencies may not be guaranteed. The authors
pointed that the reconstructed covariance matrix may not be
positive semi-definite [40], and they proposed an algorithm to
correct it. In this case, the additional physical layer embedded
prior constraint acts as post-processing to revise the physically
inconsistent result of DNNs. Furthermore, this type of physical
layer is suggested to provide feedbacks during training, as
demonstrated in Fig.[7]c, the red part. The feedback of physical
layer aims to prevent the model from learning the physical
inconsistency.
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various modalities of SAR image using well-established physi-
cal models, such as sub-aperture images, different polarimetric
features, etc. The self-supervised learning can be conducted
with contrastive learning paradigm. b. The physical layer
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guided signal that drives the neural network to learn a similar
representation.
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3) SAR Image Generation/Simulation:

This paradigm can be popularized to other SAR appli-
cations. SAR target image generation (or simulation) based
on deep generative model (such as variational auto-encoder
[44] and generative adversarial network [45]]) has attracted
much attention in recent years. The generated SAR images
are expected to be used as data supplements to support target
identification. The authenticity and interpretability of current
deep SAR image generation is a substantial obstacle that has
a significant impact on subsequent tasks [46]]. Many latest
studies input important physical parameters into the deep
generative model or use them as supervision at the output
layer, such as depression angle and target orientation, that
facilitated more reliable outcomes [47], [48]]. We consider
them physical layer as shown in Fig. [7] c, the green and blue
part.

Coupling the physical layer as a feedback in neural network
for SAR image generation has yet to be explored. When
generative model produces a pseudo SAR image, a physical
layer will be applied to verify whether it is consistent with the
knowledge base of SAR, e.g. physical parameters derived from
a well-established model. If not, the current generative model
will revise the pseudo result to minimize the inconsistency.
There are some examples to learn from in the field of fluid
simulation [49], [50]. As such, the physical layer is used for
constructing physical inconsistency as a feedback that explic-
itly constrain the generative model to fulfill some quantitative
conditions, so as to guarantee authenticity. Referred to some
latest studies in other fields, physical model as a feedback
or constraint in the loop of deep learning is also applied to
under water image enhancement [51]] and seismic impedance
inversion [52].

C. Self Supervised Learning Guidance

Self supervised learning has been attracted much attention
in recent years, since it can help reduce the required amount of
labeling. One can pre-train a model on unlabeled data and fine-
tune it on a small labeled dataset. It offers great opportunity for
SAR community where big data volume is available while the
ground truth is usually difficult to obtain. There is a remarkable
potential for SAR physical layer to apply for self-supervised
learning.

As shown in Fig.[9] two self-supervised learning paradigms
are given. The physical layer helps to establish a pretext task
for SAR image. In Fig. 9] a, different SAR image represen-
tations are generated by physical layer, for instance, the sub-
aperture images, various polarimetric feature images, etc. As
similar to SImCLR [53]] that conducted the contrastive learning
based on data-augmentation, or NPID [54] that learned the
optimal feature via instance-level discrimination, the surrogate
task can be built to form a self-supervised learning. An
illustrative example is in reference [55]).

Fig. [0 b illustrates a second line of thought, which we refer
to as physics guided learning. Firstly, the physical layer is
used for generating meaningful physical representations, like
scattering mechanisms (physical layer (i) and (ii) can both
achieve this). Meanwhile, the neural network extracts hierar-
chical spatial features from SAR image. The crucial point is

how to establish a connection between physical properties and
image features. We propose to exploit physical layer (iii) to
reveal relationships and thereby design an objective function
for self-supervised learning.

Our recent work [37]], [42], [43] details the paradigm in
Fig. 9 b. A physics guided network (PGN) for SAR image
feature learning was proposed as shown in Fig. First,
a physical layer is deployed at the beginning, where the
physical scattering properties are derived. Based on the crucial
assumption that SAR image features and the abstract physical
scattering mechanisms should share common attributes in
semantic level, a surrogate task was established via the other
physical layer that defines a loss function. The inspiration is
from reference [56]], which indicated the abstract topic mixture
on scattering properties and the high-level image features are
with similar semantics. Thus, we built the relation between the
image semantics and SAR scattering characteristics. A novel
objective function was designed to instruct self-supervised
learning guided by physical scattering mechanisms.

The advantages of this kind of learning paradigm lie in
two aspects. First, the training process takes all labeled and
unlabeled data so that the learned features generalize well in
test set. Second, the guidance of physical information leads
to physics awareness of features learned by neural networks,
i.e., the DNN feature maintains physical consistency. In a
word, the prior physical knowledge is embedded in the neural
network. The experiments in [43] verified this quantitatively
and qualitatively.

Additionally, the outputs of the physically interpretable
deep model can be further explained, which in turn inspires
algorithm improvement. We illustrate with an example of
sea-ice classification in polar area [42[]. The physics guided
learning is driven by physical signals that reflect the scattering
properties of SAR image. The guided physical signals are
visualized with t-sne in Fig. [IT] where different colors in
(a) represent semantic labels of sea-ice and each color in (b)
indicates samples with similar physical scattering properties.
One characteristic that can be seen is that young ice and
water bodies have extremely similar physical representations,
which would impede semantic discrimination. It can explain
the physics guided learning result in [42] that about 23% test
samples in water bodies class were predicted as young ice.
The explanation will motivate us to improve the algorithm by,
for instance, relaxing the physical constraints between the two
classes.

Similarly, a very recent work [57] was proposed for SAR
target recognition inspired by our work [43]. The authors
proposed a CNN under the guidance of SAR target physi-
cal model, attributed scattering center (ASC), to extract the
significant target features, that were successively injected into
the classification network for more robust and interpretable
results.

IV. TRUSTWORTHY MODELING
A. Why Trustworthy Modeling Needed

The results obtained by applying Al techniques in SAR
processing can be validated using in situ measurements of
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Fig. 11: Visualization of physics guided signals on test data by t-sne. (a) Different colors represent semantic labels of sea-
ice. (b) The physics guided signals are grouped into eight clusters, where each color indicates samples with similar physical

scattering properties.

known targets. For example, a common approach for calibra-
tion/validation of SAR data is to employ an electronic target
(transponder) that receives a signal, applies a controllable time
delay, and transmits the delayed signal towards the receiver
of the bistatic/monostatic system. Such a target can be used
to validate results related to deformation measurements (e.g.,
atmospheric corrections) or polarimetric analysis.

Some real world applications of SAR requires the measure-
ment of reliability and uncertainty. One example is the sea-
ice classification in the untraversed polar regions where the
ice is always promptly changeable, that would result in the
difficulty for annotation and the lack of reference data. In this
case, the predictions in unknown polar areas obtained by Al
model need to be trusted by humans. Strong robustness and
plausible degree of confidence of ML system prediction are
equally as important as its accuracy.

Fig.[12]a indicates building orientations have a great impact
on polarization orientation angles [58] and scattering mech-
anisms [38|]. The zoomed-in region mainly contains ortho
buildings buildings where ¢; is close to 0° and orientated
buildings with a larger ¢. The polarization orientation angles
of ortho buildings are obviously smaller than those of oriented
buildings. Ortho built-up areas mainly depict double scattering

(DS) and mixed scattering (MS) where the double scattering
dominates. The oriented buildings are with volume scattering
(VS). Fig. [[2] b shows limited robustness of recognition
performance as the angle of test data varies when training with
a small range of angles. A trustworthy model is expected to
perceive SAR scattering variations with a variety of physical
parameters and be perturbation-tolerant.

B. Trustworthy Modeling with Uncertainty Quantification

The development of Bayesian deep learning [59] has caught
much attention in recent years, where the posterior distribution
over parameters are obtained instead of the point estimation.
A crucial property of the Bayesian method is its ability to
quantify uncertainty, to the benefit of constructing trustworthy
model.

In the case of Fig. [I2] b, the performance of deep neural
networks drops dramatically when testing SAR targets of very
different orientation angles with training data. The model is
over-confident about some uncertain data that cannot be per-
ceived by frequentist method. Bayesian deep neural network,
instead, is able to calibrate the output score and measure
the uncertainty of the prediction. Some recent studies applied
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Bayesian deep learning for SAR sea-ice segmentation [60]—
[62], as well as target discrimination [63]. The generated
uncertainty map can serve as a guideline for the experts in
annotation and improve trust between users and the model.
Some approximation strategies of Bayesian deep neural net-
work, such as Monte Carlo Dropout [[64] and Deep ensembles
[65], are promising for different SAR applications.

We give an example of SAR ship detection for demonstra-
tion. The limited labeled training data, and the interference
of complex scattering from target itself or the inshore back-
ground, would strongly restricted the detection performance.
The ship detection result on some selected SAR images from
AIR-SARShip-1.0 dataset , obtained by FCOS detection
algorithm [[67]], are shown in the first row of Fig.[I3] Compared
with the ground truth annotation in the third row, the detection
result appears many false alarms. It is crucial to estimate the
model uncertainty, which is basically brought by inadequate
training data, to evaluate the reliability of SAR ship detection
model and provide more trustworthy predictions.

When we apply the Monte Carlo (MC) Dropout training
strategy to approximate the Bayesian inference [[64]], it captures
the uncertainty from the existing deep model for SAR ship
detection. The results with high uncertainty and very low
classification scores are discarded, with only the trustworthy
predictions preserved. The results are shown in the second row
of Fig. [13] where the false alarms are evidently reduced. In
the fourth and fifth SAR image, the localization uncertainty
of two large ships visualized with circles around the corner
of the predicted bounding box is relatively high. Intuitively,
we can infer the reason for the weak capability of the trained
model in detecting such kind of targets is probably the lack
of the large size ships in the training set. The feedback from
the uncertainty estimation should further inspire the follow-
up studies to improve the algorithm and build trustworthier
models.

V. SUPPLEMENTARY EXPLANATIONS

Beyond the hybrid and trustworthy modeling, extra expla-
nations and other interpretable models are as well required to
assist with developing more transparent AI model for SAR.
The explainable artificial intelligence (XAI) techniques, such
as gradient based, attention based, and occlusion based expla-
nation methods, are helpful to demonstrate the effectiveness
of integrating physical layers to achieve explainability.

The transparent machine learning models, such as linear
regression, decision trees, and Bayesian models, are inter-
pretable [68]. The algorithm itself provides explanations, for
example, Latent Dirichlet Allocation (LDA) builds a three-
level hierarchical Bayesian model to describe the underlying
relationship among document-topic-word. That is, the docu-
ment can be explained with a set of topic, where each topic in
turn, is represented by a distribution over words. Karmakar et
al. used the LDA model for SAR image data mining to
generate the topic compositions and group them into semantic
classes, which were fused with domain knowledge obtained
by active learning from experts. The transparent model can
be also integrated in a deep learning framework to approach
the explainability. Huang et al. [42], applied the LDA
model to generate the physical attributes representation as the
guided physics signals, rather than directly using the physical
scattering characteristic labels to train the physics guided
network. That is because the learned physics-aware features
are expected to the benefit of semantic label prediction, but the
semantic gap actually exists between the physical scattering
characteristics and the semantic annotation. Consequently, the
LDA model enables the guided signals to gain the abstract
semantics and be explained with physical scattering properties.

The other purpose for approaching the explainability lies in
the applications of transfer learning. The manual annotation
in SAR domain is difficult and the deficiency of labeled
data basically restricts the development of data-driven meth-
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ods. Facing a wide variety of launched SAR platforms with
various frequency bands and resolutions, as well as other
multi-spectral, hyper-spectral, optical remote sensing sensors,
it is of vital importance for elucidating the transferability
of ML models among inhomogeneous data. Arrieta et al.
[68] indicated the transferability is one of the goals toward
reaching the explainability. Although many researches have
explored different deep transfer learning methods in SAR
domain [46], [[70], [71], the inner transfer mechanisms of deep
learning model still need explanation of insight. An insufficient
understanding of the model may mislead the user toward
inappropriate design of algorithm and fatal consequences, i.e.
the negative transfer. Based on SAR target recognition, we
proposed to analyze the transferability of features in DNN,
which contributed to explaining what, where, and how to
transfer more effectively for SAR images [72]. The inspiration
also motivates the follow-up studies, including the SAR-
specific pretrained model [[73]], the application in detection task
[74]], and the interpretability analysis of deep learning model
in radar image [75].

VI. CONCLUSION AND PERSPECTIVES

In this paper, we prospect an Al paradigm shift for SAR
applications that is explainable, physics aware and trustwor-
thy. To ground this, SAR physical layers embedded with
domain knowledge are introduced, which are supposed to
be integrated and interacted with neural networks for hy-
brid modeling. Some illustrative examples are provided to
demonstrate the general patterns, showing algorithmic and
scientific explainability. In addition, we emphasize the impor-
tance and approaches of trustworthy modeling with Bayesian
deep learning, as well as illustrating some other techniques
such as interpretable machine learning method, explainable

techniques, and model transferability, that would assist with
developing more transparent Al model for SAR. In fact, this
field belonging to interdisciplinary research is still largely
undeveloped. To our best knowledge, such approaches have
not been formulated in the past years. So far, only some plain
attempts have been made. Significant questions and challenges
remain, e.g., the feasible representation of SAR physical layer,
the optimized form of physical constraint, and hybrid modeling
optimization.

Currently there are several smart sensing techniques in the
SAR community that can be exploited as pre-processing steps
of data fed into DNNS, e.g., multi-aperture focusing in bistatic
configurations [76], monostatic/bistatic tomography, polari-
metric decomposition, deformation time series. The outputs
of these techniques can expose features that probably cannot
be directly extracted by a DNN, especially when using a
small training data set. The newly introduced Al paradigms
can apply to the broad class of coherent imaging systems. A
few examples can be enumerated: computer tomography, THz
imaging, echographs in medicine or industrial applications,
sonar or seismic observations in Earth sciences, or radio-
telescope data in astrophysics.
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