Datcu, Mihai und Huang, Zhongling und Anghel, Andrei und Zhao, J. und Cacoveanu, Remus (2023) Explainable, Physics-Aware, Trustworthy Artificial Intelligence: A paradigm shift for synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine (GRSM), 11 (1), Seiten 8-25. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/MGRS.2023.3237465. ISSN 2168-6831.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10035918/authors#authors
Kurzfassung
The recognition or understanding of the scenes observed with a synthetic aperture radar (SAR) system requires a broader range of cues beyond the spatial context. These encompass but are not limited to the imaging geometry, imaging mode, properties of the Fourier spectrum of the images, or behavior of the polarimetric signatures. In this article, we propose a change of paradigm for explainability in data science for the case of SAR data to ground explainable artificial intelligence (XAI) for SAR. It aims to use explainable data transformations based on well-established models to generate inputs for AI methods, to provide knowledgeable feedback for the training process, and to learn or improve high-complexity unknown or unformalized models from the data.
elib-URL des Eintrags: | https://elib.dlr.de/201622/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Explainable, Physics-Aware, Trustworthy Artificial Intelligence: A paradigm shift for synthetic aperture radar | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Februar 2023 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Magazine (GRSM) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 11 | ||||||||||||||||||||||||
DOI: | 10.1109/MGRS.2023.3237465 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 8-25 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 2168-6831 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Explainable AI, SAR data | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||
Hinterlegt am: | 10 Jan 2024 14:07 | ||||||||||||||||||||||||
Letzte Änderung: | 10 Jan 2024 14:07 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags