Kondmann, Lukas and Saha, Sudipan and Zhu, Xiao Xiang (2023) SemiSiROC: Semisupervised Change Detection With Optical Imagery and an Unsupervised Teacher Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, pp. 3879-3891. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3268104. ISSN 1939-1404.
PDF
- Published version
15MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/10106115
Abstract
Change detection (CD) is an important yet challenging task in remote sensing. In this article, we underline that the combination of unsupervised and supervised methods in a semisupervised framework improves CD performance. We rely on half-sibling regression for optical change detection (SiROC) as an unsupervised teacher model to generate pseudolabels (PLs) and select only the most confident PLs for pretraining different student models. Our results are robust to three different competitive student models, two semisupervised PL baselines, two benchmark datasets, and a variety of loss functions. While the performance gains are highest with a limited number of labels, a notable effect of PL pretraining persists when more labeled data are used. Further, we outline that the confidence selection of SiROC is indeed effective and that the performance gains generalize to scenes that were not used for PL training. Through the PL pretraining, SemiSiROC allows student models to learn more refined shapes of changes and makes them less sensitive to differences in acquisition conditions.
Item URL in elib: | https://elib.dlr.de/199715/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | SemiSiROC: Semisupervised Change Detection With Optical Imagery and an Unsupervised Teacher Model | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 20 April 2023 | ||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 16 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3268104 | ||||||||||||||||
Page Range: | pp. 3879-3891 | ||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | semisupervised, change detection | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Camero, Dr Andres | ||||||||||||||||
Deposited On: | 28 Nov 2023 12:48 | ||||||||||||||||
Last Modified: | 28 Nov 2023 12:48 |
Repository Staff Only: item control page