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SemiSiROC: Semisupervised Change Detection With
Optical Imagery and an Unsupervised Teacher Model

Lukas Kondmann , Sudipan Saha , and Xiao Xiang Zhu , Fellow, IEEE

Abstract—Change detection (CD) is an important yet challeng-
ing task in remote sensing. In this article, we underline that
the combination of unsupervised and supervised methods in a
semisupervised framework improves CD performance. We rely on
half-sibling regression for optical change detection (SiROC) as an
unsupervised teacher model to generate pseudolabels (PLs) and
select only the most confident PLs for pretraining different stu-
dent models. Our results are robust to three different competitive
student models, two semisupervised PL baselines, two benchmark
datasets, and a variety of loss functions. While the performance
gains are highest with a limited number of labels, a notable effect of
PL pretraining persists when more labeled data are used. Further,
we outline that the confidence selection of SiROC is indeed effective
and that the performance gains generalize to scenes that were not
used for PL training. Through the PL pretraining, SemiSiROC
allows student models to learn more refined shapes of changes and
makes them less sensitive to differences in acquisition conditions.

Index Terms—Change detection (CD), multitemporal, optical
images, semisupervised, unsupervised.

I. INTRODUCTION

CHANGE detection (CD) is the task of segmenting chang-
ing pixels over time in multitemporal Earth observation

data. In the face of a changing planet, CD is at the core of many
relevant monitoring tasks. It allows us to study the temporal
evolution of forests [1], [2], [3], urban areas [4], [5], coastal and
maritime regions [6], [7], and the effects of natural disasters [8],
[9], [10], [11], [12]. CD methods face a number of hurdles
related to the acquisition conditions between the different times
the images are collected. This includes but is not limited to
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illumination conditions, clouds and shadows, acquisition angles,
and the definition of what constitutes a change [13]. Despite
these challenges, several trends have been beneficial for the
methodological progress in CD in recent years. First, open data
policies, for example, in the Copernicus program [14] increase
accessibility and availability of multitemporal Earth observation
data [15]. Second, technological progress results in increasing
spatial and temporal resolution of satellite data with up to daily
imagery [16]. Third, methodological progress in image recog-
nition, particularly, deep learning [17], has also fueled a variety
of improvements in artificial intelligence for Earth observation
including CD [18], [19], [20].

Many recent advances are in supervised learning for binary
CD from optical imagery [21], [22], [23], [24], [25], [26],
[27], [28], [29]. Following the success of convolutional neural
networks (CNNs) in a variety of computer vision problems [17],
CNNs have been used frequently for CD problems as well.
Daudt et al. [23] introduce a siamese CD architecture inspired
by UNet [30]. ESCNET is a combination of superpixel enhance-
ment and a deep CNN [31]. For CD in aerial images, Xu et al. [32]
design a pseudosiamese capsule network.

More recently, the success of vision transformers [33], [34]
has induced increasing attention also from the remote sens-
ing community. For example, Bandara and Patel [21] design
ChangeFormer, a siamese transformer network for building CD.
In a similar spirit, Chen et al. [25] employ a self-attention-based
transformer method. Further, many approaches also combine
convolutional and attention-based approaches with promising
results [22], [35], [36].

However, obtaining large-scale labeled data for CD remains
a challenge. Unsupervised CD methods [37], [38], [39], [40],
[41], therefore, learn without labeled data to circumvent this
issue. Many methods also utilize the advances in deep learning
for unsupervised CD. For example, Saha et al. introduce deep
change vector analysis (DCVA) for high-resolution imagery,
which combines ideas from classical image differencing with a
deep convolutional feature extractor [37]. DCVA has also been
further extended in combination with self-supervised pretrain-
ing [42] and refined further for medium-resolution images [38].
A generative approach is used in [43] to model the different
image in an unsupervised fashion. Zhan et al. [44] rely on an
initial classification of changing superpixels with a fully CNN.
These superpixels are then categorized by uncertainty and used
to train a classifier in a second step.

Still, in unsupervised CD, particularly with lower resolution,
many methods reach high performance also without the use of
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deep features. Sibling regression for optical change detection
(SiROC) [39] is inspired by exoplanet search and compares
pixels against their distant neighborhood to identify changes
in optical imagery. Furthermore, image differencing also called
change vector analysis [45] and its extensions [46], [47], [48]
still play a role in practice.

Semisupervised approaches bridge the gap between unsuper-
vised and supervised approaches. These methods try to combine
labeled data with larger amounts of unlabeled data to support
the training process. Among the first to apply semisupervised
learning in CD were Bovolo et al. [49]. They use a Bayesian
thresholding mechanism to set up an adequately defined binary
semisupervised support vector machine (S3VM). Modified self-
organizing feature App (SOFM) uses only a limited set of initial
labels to compute soft labels for unlabeled additional input [50].
Chen et al. [51] rely on probabilistic Gaussian processes (GP)
as a first step with labeled and unlabeled data. The outputs of
the GP classifier are then refined with a Markov random field
regularizer. A Laplacian regularized metric learning mechanism
is used in [52] to exploit unlabeled training data at scale for
hyperspectral image CD. For very high spatial resolutions,
graph convolutional networks (GCNs) are also effective for
semisupervised learning by encoding multitemporal images as
a graph [53].

One particularly effective direction in semisupervised learn-
ing in general image recognition is student–teacher models [54].
Typically, there is a teacher model that is trained on labeled data
and predicts additional labels for images where ground truth is
not available. Then, a student model uses these additional labels,
referred to as pseudolabels (PL), during the training. With Earth
observation data, PLs have also been shown to be effective for
hyperspectral image classification [55]. PLs are also related to
unsupervised CD approaches for small scenes, which rely on an
initial difference image or change classification and finetune this
further with another unsupervised method [43], [56], [57]. This
is similar to using PLs although these approaches are purely
unsupervised and are applied only to single scenes instead of
large-scale training. Li et al. [58] use PLs explicitly for CD in
SAR images but stay in the unsupervised domain. Similarly,
Gao et al. [59] train convolutional wavelet neural networks
with automatically generated labels for sea ice CD with SAR
images.

In many student–teacher settings, the actual labels are used at
least in some capacity in the pseudolabeling. However, this can
be somewhat challenging in scenarios with limited labels as in
CD. Additionally, applications of methods in regions outside
their training data often require some robustness to unseen
regions [60]. In this article, we therefore propose SemiSiROC
where we use an unsupervised method with well-calibrated
uncertainties for PL training. The uncertainty score for each
prediction allows us to filter only high-quality PL for pretraining.
In the second step of the semisupervised method, we finetune
student models with the actual labels to improve optical CD
performance. We evaluate our results on a binary version of
the DynamicEarthNet benchmark [61] as well as the OSCD
dataset [24] and compare the effectiveness of our strategy with

five competitive CD models as students: ChangeFormer [21],
BIT [25], DTCDSCN [29], FC-Siam-Diff [23], and FC-Siam-
Conc [23]. Although SemiSiROC is most effective in limited
label scenarios, we also find that even with a sizeable amount
of 1000 labeled image pairs, SemiSiRoc boosts performance
for all tested models notably. While student–teacher models
themselves are not new in remote sensing, our ingenuity lies
in the components specifically designed for CD on large-scale
datasets and further validation on a global dataset of such scale.
We have three main contributions.

1) We present SemiSiROC, a semisupervised CD method in
optical remote sensing that combines advanced supervised
models with unsupervised pseudolabeling.

2) Building on the confidence filtering of SiROC, we devise
a mechanism to prioritize relevant scenes during PL filter-
ing.

3) We propose a detailed experimental setup for CD subject
to geographic disparity, based on the recently launched
publicly available DynamicEarthNet dataset [61]. This
experimental setup will be helpful for other researchers to
pursue research in this direction. Our experiments on this
setup and the OSCD [23] benchmark show that semisu-
pervised learning is indeed helpful.

II. METHOD

A. SemiSiROC

Let us assume, we have two different collections of images,
D and U . D is a collection of ND bi-temporal pairs with as-
sociated pixelwise change/unchanged label. On the other hand,
U is a collection of NU unlabeled bitemporal pairs. Generally
NU > ND, however this is not a strict assumption. TheU andD
can be acquired over different geographic areas/continents, thus
they need not be representing the same geographic distribution.
Our goal is to exploit bothD andU to learn a CD model. Toward
this, we design a semisupervised pipeline that allows exploiting
U for model training even if labels for it are not available. We
exploit a teacher–student model where the teacher model labels
the images and selects relevant samples from U . This allows its
student to exploit the label spaceD ∪ U instead ofD. Therefore,
we train with PLs first before we go on to real labels. This
is consistent with semisupervised literature [62] and has the
underlying assumption that the model can immensely benefit
from PLs as a first step of training, which can be subsequently
refined with actual labels.

The PLs for pretraining are based on SiROC [39], an unsu-
pervised method for optical CD. We average the confidence on
the cube level and as a default choice use the top 25%. Then,
we train a student model with the preselected locations and PLs
first before finetuning with the actual labels. Since the teacher
model exploits SiROC in a semisupervised setting, we call our
approach SemiSiROC.

Algorithm 1 outlines SemiSiROC in pseudocode in more
depth. Given the unlabeled collection U , the labeled collection
D, the corresponding labels L, and a supervised CD model,
the desired output is a binary change segmentation. At first, we
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Algorithm 1: SemiSiROC.
Input: U , D, L, model
Output: Binary Change Segmentation
1: C = [],P = []
2: for (u in U ) do
3: Pu, Cu = SiROC(u)
4: C.append(Cu)
5: P .append(Pu)
6: end for
7: UP = CP .top_quarter(C)
8: PP = P .top_quarterC)
9: model.train(UP , PP ) {PL training}

10: model.train(D,L) {Finetuning}

define a collection of confidence scores C and PLs P . Then,
we loop over the elements of U and obtain PLs and confidence
scores with SiROC for each image pair. Before semisupervised
pretraining, we filter P and U to only use the scenes with the
highest confidence, which is defined as UP . These scenes are
used as input for the pretraining of the CD model before training
with actual labels in the final step.

While the proposed SemiSiROC approach is similar to many
semisupervised learning strategies [62], note that our approach
is distinct in the following three ways:

1) how we generate the PLs with an unsupervised CD
method;

2) how we select the samples for student training based on a
well-calibrated uncertainty;

3) how we exploit them for global CD.

B. Unsupervised Teacher Model

The goal of the teacher model is to assign PLs to some samples
from U with reasonable confidence that they can be used later
for training the CD (student) model. Since U and D may not
necessarily be from the same distribution, the teacher model
may use its learning from D and bias the distribution of PLs
for U by overfitting to D. This is particularly relevant in the
geo context where different locations and points in time can
quickly change the data-generating distribution [63]. We argue
that the teacher label should refrain from using the actual labels
in any form to obtain the PLs. If the PL extraction process
uses the actual labels, this would make them interdependent
and hamper generalization. Thus, the teacher model should
be based on unsupervised learning in this case. Additionally,
semisupervised pretraining is more flexible with unsupervised
PLs and our pretrained model can serve as a starting point for
other CD applications without the need to retrain the teacher
model on new datasets with new labels to obtain other PLs.
Therefore, we propose to use an unsupervised teacher model to
incentivize more robustness to spatial generalization in the PLs.
This is in contrast to many other semisupervised approaches
with PLs, which rely on teacher models that have seen at least
some of the actual labels [62].

As unsupervised teacher model, we employ SiROC [39].
While the method is highly performant, we pick it as a PL
source or so-called teacher model mainly because it comes with a
built-in, well-calibrated confidence score ranging from 0 (low)
to 1 (high) with its prediction for each pixel. This allows us
to filter PLs based on their confidence and only train on high
confidence labels. As this confidence score is closely connected
to the quality of the PL, we hypothesize that algorithms should
learn better with selected PLs only. Out of NU total samples in
U , N ′

U are chosen after confidence filtering for pretraining. In
the following, we explore SiROC in more depth.

1) Sibling Regression for Optical Change (SiROC): SiROC
models a pixel as a linear combination of a set of neighboring
pixels n at a certain time t in a time series. At time t+ 1, the
value of the respective pixel is predicted based on the neighbors
n at t+ 1. The deviation between the actual and the predicted
pixel value is interpreted as a change signal. If the difference is
high, this is seen as an indication of change as the pixel seems
to have undergone a change compared to its neighborhood. The
comparison against the neighborhood serves to eliminate local
or image-wide trends as sources of false positives for changes.

More formally, given a channel of a multispectral image I at
time t and t+ 1, the core of the predicted change segmentation
P̂ is based on the following equation:

P̂ =

{
1, if Ît+1 − It+1 > o
0, otherwise

(1)

where o is the Otsu threshold [64]. Ît+1 is the predicted image
at time t+ 1 based on half-sibling regression. To extend this to
multiple channels C, the absolute sum of the difference between
the predicted and the actual image is taken as

P̂ =

{
1, if

∑C
c=1 |̂It+1,c − It+1,c| > o

0, otherwise.
(2)

For formal details on how Ît+1,c is obtained given a set
of neighbors, we refer to [39]. SiROC ensembles over many
mutually exclusive neighborhoods and relies on majority voting
between the models for its final prediction. This iterative process
uses mutually exclusive sets of neighboring pixels that are in-
creasingly more distant from the pixel of interest itself. Relevant
parameters for this process are the maximum neighborhood size
and the step size of the ensemble. The number of ensembles is
given as the maximum neighborhood size divided by the step
size. We use SiROC with its presented defaults in [39]. The
respective parameter values are as follows.

1) Maximum neighborhood size: n_max=200.
2) Initial exclusion window: e_start=0.
3) Step size of ensemble: s=2.
4) Filter size of morphological operations: p=5.
One deviation is to reduce the step size of the ensemble from 8

to 2. This results in 100 models with a maximum neighborhood
size of 200 and allows for more variation in the uncertainty
estimates.

The number of votes, as shown in [39], can be interpreted
as a well-calibrated uncertainty and is used in this work as a
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confidence score. This is because the performance of SiROC
is increasing in its confidence. Therefore, we use SiROC in
combination with three supervised student models for CD.

C. Student Model

Once the teacher model is used to select the pseudosamples
from U , ideally any machine-learning-based classifier model
can be used to train the student model. The training involves the
following two steps:

1) training with pseudo labeled N ′
U samples from U , ob-

tained in Section II-B;
2) fine tuning with the labeled dataset D.
To illustrate that our SemiSiROC can work with a diverse

set of classifiers, we chose several competitive supervised CD
architectures. They are outlined in more detail as follows.

FC-Siam-diff [23] is a fully convolutional Siamese neural
network inspired by the UNet architecture [30]. Pre- and pos-
timages are processed in two separate parallel streams with
shared weights, which are only merged after the convolutional
layers of the network. In contrast to a classic concatenation
of features, this network takes the absolute difference of the
encoding streams. This allows the model to focus on temporal
differences in the image pair, which is well suited for CD
tasks. These differences are infused as inputs to the upsampling
steps. Allowing feature differences to be passed without further
processing far into the network allows the network to treat simple
decisions without unnecessary complexity.

FC-Siam-conc [23] is similar to FC-Siam-diff with one major
distinction. Instead of taking feature differences of the encoding
streams, the features are concatenated. This gives the model
more flexibility but nudges it less directly toward a temporal
comparison of features.

DTCDSCN [29] stands for dual task constrained deep Siamese
convolutional network. It is a convolutional model, which per-
forms semantic segmentation and CD simultaneously. This is
helpful for change detection since a prior understanding of
objects and their size from semantic segmentation can be utilized
for the CD task.

ChangeFormer [21] is also a Siamese network with a
transformer-based encoder that reaches competitive perfor-
mance on the LEVIR-CD [65] and DSIFN-CD [22] benchmarks.
The hierarchical transformer encoder uses four transformer
blocks in with shared weights in each branch. After every
transformer block, a difference module is taken to compare
differences at different abstraction levels. These differences are
then passed to a lightweight multilayer perceptron decoder,
which samples the features up and computes the final predicted
change map.

Bitemporal image transformer (BIT) [25] also relies on self-
attention rather than only deep convolutional features in a
transformer framework. It has three main elements: a siamese
semantic tokenizer, a transformer encoder, and a transformer de-
coder. The siamese backbone extracts convolutional features and
inputs them into the semantic tokenizer. Inspired by advances in
language processing, the tokenizer pools the image features into
a compact set of vocabulary. The compact tokens are converted

back to the pixel space and fed into a CNN prediction head. As
a CNN backbone for the feature extraction, ResNet18 is used
following the main paper.

III. EXPERIMENTAL VALIDATION

A. Data

1) DynamicEarthNet: We base our analysis on a modified
version of the DynamicEarthNet dataset [61]. This is because
it allows benchmarking CD algorithms with areas of interest
(AOIs) across the globe and covers a variety of different changes
that are not specific to a certain use case such as buildings or
urban regions only. Both of these properties make the dataset
well-tailored to binary CD in an application-agnostic way. It
contains monthly, manual land cover annotations for two years
with Planet imagery for 75 AOIs across the globe. The locations
were selected to include a wide spectrum of land cover changes
across seven classes.

We pick the labels of the first and last month of each AOI and
compute a binary mask of changing land cover. This maximizes
change and also ensures a certain difference in the scenes. The
corresponding Planet Fusion images are highly preprocessed
as an analysis-ready product, which includes a variety of steps
including temporal gap filling of clouds and shadow removal.
Each scene is 1024× 1024 pixels with 3-m resolution per pixel
in size, which results in an area per scene of about 10 km2. To
be consistent with the image size in [21], we split each scene
into 16 256 × 256 pixels RGB images. This results in a total of
1200 pairs of pre and post images taken 2 years apart. The class
balance in the resulting dataset is about 80% no change and 20%
change.

Our baseline train, validation, and test split is visible in
Fig. 1. Locations are available across the globe, which is relevant
to test generalizability to unseen regions where all continents
except Antarctica are covered. Following the DynamicEarthNet
terminology, we refer to the locations also as cubes given that the
2D images also vary in time. The cubes do not only differ by their
geography but also by the type of change. The dataset covers
locations from coastal areas, islands, urban regions, agricultural
areas, and forests. This shows the diversity of change in practical
applications, which makes this dataset challenging.

The cubes based in the continental US are used as training
(blue), the validation data are taken from central America (green)
and we test with the remaining cubes from across the globe. This
simulates label scarcity in global CD tasks where generalizabil-
ity to unseen regions is a key requirement. Particularly, annotated
data in low and middle-income countries are often relatively rare.
However, to validate our results against this choice, we use other
splits with more training data (16, 32, 64 cubes) as an ablation
study below.

2) Onera Satellite Change Detection (OSCD) [23]: As a
secondary dataset, we rely on OSCD, which in total contains
24 before and after pairs of Sentinel-2 images in urban areas
across the globe but we only use the ten pairs in the test set.
To be consistent with our training efforts on DynamicEarthNet,
we only include the RGB channels and crop 256 × 256 images
from the original scenes. As OSCD image pairs are not square
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Fig. 1. Spatial train/validation/test split used as a default. The limited amount of training data simulates real-world scenarios where training data are scarce and
mainly from specific regions.

and vary in size, we pad the images to the next multiple of
256 and mask the added points during evaluation of the change
prediction.

B. Training and Evaluation

Our goal is to evaluate the effectiveness of a PL pretraining
step. Therefore, we compare SiROC confidence pretraining for
a variety of specifications including the aforementioned models
but also different choices of training sets, PL sets, and training
losses. We train each model until convergence with and without
a pretraining step. For this study, experiments were conducted
with a single NVIDIA Quadro P4000. We acknowledge that
semisupervised pretraining requires an additional computational
effort compared to finetuning. PL training for 50 epochs with the
top quarter of scenes by confidence takes about 15 min with the
P4000 for the FC-Siam-diff model. However, PL training has to
be done only once and allows for all kinds of CD applications.

The following specifications are used for all experiments to
ensure comparability. We train with Adam as an optimizer with
a batch size of 32 and a starting learning rate of 0.0001 and
linear weight decay. We evaluate our results based on three
popular criteria: Accuracy, mean IOU (MIOU), and mean F1
Score. Formally, in terms of false positives (FP), true positives
(TP), false negatives (FN), and true negatives (TN), these criteria
have the following definitions:

Accuracy = (TP + TN)/(TP + TN + FN + FP). (3)

Accuracy is simply asking how often is our prediction correct
relative to the total number of predictions.

MIOU = (IOU1 + IOU0)/2 (4)

with IOU = TP/(TP + FP + FN). In comparison to accuracy,
the IOU criterion eliminates TN from the picture per class.
Similarly

MF1 = (F11 + F10)/2 (5)

with F1 balancing precision and recall. F1 = (2 ∗ precision ∗
recall)/(precision + recall). Precision is defined as TP/(TP +
FP) and recall as TP/(TP + FN). Every model is run for five
different seeds and reported scores are, therefore, a mean with
the respective standard deviation in brackets.

C. DynamicEarthNet Results

Table I outlines the main results of this article. Overall, we
test PL pretraining with SiROC with four different competitive
models. Each pair of rows for one model compares the
scores with and without pretraining on the confident PL. All
specifications are run five times with different seeds to increase
the robustness of the result against an unrepresentative seed. PL
training is done with a focal loss (FL) and training with the real
labels with the split of Fig. 1 and a MIOU loss with only the top
25% of cubes based on average SiROC confidence per cube.

At first, FC-Siam-diff with PL pretraining reaches an overall
accuracy of 0.7812 with a MIOU score of 0.4854 and a Mean
F1 Score of 0.6029. This makes it the best model in Table I
overall according to all three criteria and notably better than its
counterpart without pretraining. FC-Siam-diff without SiROC
pretraining is about 15 percentage points (p.p.) lower in accu-
racy, 7 p.p. lower in MIOU, and about 3 p.p. lower in terms
of mean F1 score. Further, standard deviations of performance
are visibly lower with confidence-filtered PL pretraining for
FC-Siam-diff. FC-Siam-Conc does not seem competitive here in
comparison with a fairly low accuracy of around 62% with PLs
and 56% without them. It seems that without the explicit feature
difference, the model is not incentivized to pay enough attention
to temporal differences for the final change segmentation. There-
fore, it has trouble to distinguish changes from nonchanges. This
is improved by the use of PLs but the issue remains large in
comparison to FC-Siam-diff.

Similarly, the scores of ChangeFormer improve and stabilize
notably by an even larger margin although the baseline per-
formance is comparably bad. The general effectiveness is also
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TABLE I
QUANTITATIVE RESULTS DYNAMICEARTHNET GROUPED BY PL USE

confirmed when looking at BIT and DTCDSCN although the
margins seem slightly lower. Given that DTCDSCN, and partic-
ularly, FC-Siam-conc seem weaker convolutional baselines than
FC-Siam-diff, we focus on the latter, ChangeFormer and BIT,
for the remainder of this paper for the sake of brevity. As an
additional baseline, the performance of SiROC on the test set is
given as a reference point.

Generally, SiROC places decently on the dataset given that it is
an unsupervised method and often even outscores the supervised
baselines with few labels. The information contained in the
PLs and the capacity of the methods combine effectively in our
semisupervised strategy. The respective scores are consistently
substantially higher than in the SiROC baseline with the PLs.

Fig. 2 visualizes model predictions for eight image pairs of
the models in Table I. On top are the preimage [see Fig. 2(a)] and
postimage [see Fig. 2(b)] samples together with the ground truth
[see Fig. 2(c)] from left to right. Large forest changes are, for
example, visible in the image on the left or in middle. Notably,
the illumination conditions between the pre- and postimages
differ slightly, which is often a challenge in CD problems [37].
The first comparison is for FC-Siam-Diff with training on PLs
in Fig. 2(d) and the corresponding version without it in Fig. 2(e).
Fig. 2(d) was the best performing model quantitatively in Table I,
which is confirmed by the visual inspection of the predictions.

The location and the shape of large changes are segmented
well with limited mistakes. While the model does miss some
smaller changes on the right, regions in the middle are segmented
well. In comparison to Fig. 2(e) without PLs, the results are
visibly better in Fig. 2(d). The plain FC-Siam-Diff is thrown off
by different shades of green, which results in false positives in
the middle and on the right. The PL version helps to reduce these
false positives due to acquisition conditions and further seems to
improve not only the location but also the shapes of segmented
changes.

As also visible in Table I, the segmentation performance of
ChangeFormer and BIT is generally worse in comparison to
FC-Siam-Diff. SiROC PLs brought the biggest improvement for
ChangeFormer in Table I, which is also visible in Fig. 2(f) and
(g). The no PL version predicts change for virtually all grassland
regions since it interprets the change in illumination as change.
It is, therefore, too sensitive to the change class and struggles to
extract meaningful change. This improves visibly with the PL

training. For example, the shapes in the middle are fit notably
better.

Similarly, the PLs bring improvement with BIT as shapes get
more refined and there are fewer false positives on the right.

The impressions of Fig. 2 are generally confirmed when
inspecting predictions for a more complex urban scene in Fig. 3.
Again, the upper panels for each method show pre- and postim-
ages as well as the ground truth. For all three models, the upper
prediction with PL pretraining shows more refined shapes. This
becomes particularly visible for ChangeFormer [see Fig. 3(f)
and (g)] and BIT [see Fig. 3(h) and (i)], where the predictions
without PLs are visibly more blurry and overall worse. The
difference is smaller for FC-Siam-diff but the no PL version [see
Fig. 3(i)] predicts a number of false positives that are predicted
correctly with PLs [see Fig. 3(d)] particularly on the left and
center right. On the other hand, both models miss key changes
in this complex scene where the no PL variant seems keener
on classifying something as a change. Overall, the qualitative
inspection of scenes confirms our finding that confidence-filtered
PLs help increase CD performance.

Table I shows that PL training is effective in addition to
supervised use of labels. Table II outlines what happens when
other PLs based on CVA or DCVA are used as semisupervised
baselines. The training setup is identical to Table I and the scores
for SiROC PL are the same. What varies is the source of the PLs
in the pretraining step listed in the second column. FC-Siam-Diff
with SiROC PLs reaches high scores in accuracy and MIOU.
Accuracy is 2–3 p.p. higher compared to other PLs, which is
significant but the MIOU edge is rather small. For MF1, it seems
that CVA and DCVA PLs, although lacking behind in accuracy,
reach a slightly more balanced classification with 61.21% MF1
each. For ChangeFormer and BIT, the scores are again lower
on average. Compared to CVA, the Change Former SiROC
combination scores visibly better across all three categories (+ 8
p.p. accuracy,+ 3 p.p. MIOU, + 2 p.p. MF1). ChangeFormer with
SiROC PLs notably exceeds accuracy and MIOU compared to
its DCVA baseline and obtains a similar MF1 score. The picture
for BIT is similar with higher accuracy and MIOU and slightly
better (CVA) or marginally worse (DCVA) F1 scores. Over-
all, SiROC PLs perform visibly better in accuracy and MIOU
where the edge is particularly apparent for ChangeFormer
and BIT.
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Fig. 2. Qualitative results of eight sample image pairs with ground truth and respective model predictions with and without PLs. In general, the PLs seem to help
the models reduce false positives based on illumination differences. Examples of this are deforestation in the middle and on the right. (a) Preimages. (b) Postimages.
(c) Ground truth. (d) FC-siam-diff PL. (e) FC-siam-diff no PL. (f) ChangeFormer PL. (g) ChangeFormer no PL. (h) BIT PL. (i) BIT no PL.

D. DynamicEarthNet Ablation Studies

1) Amount of Training Data: One may be concerned that the
edge of our approach is limited by the small number of training
cubes with real labels. Therefore, we iteratively add more train-
ing cubes to explore differences in the edge depending on this
parameter. Table III presents these scores on a harmonized test

set for this table. As we use up to 64 cubes for training and aim
to keep the scores comparable, we use the respective test set for
all specifications in this table. All PL specifications are again
pretrained with the top 25% of cubes in confidence. We use all
available training cubes with FC-Siam-diff and Change Former
in the upper panel. Despite the increasing amount of training
data, FC-Siam-diff remains better than ChangeFormer by a
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Fig. 3. Qualitative results of eight sample image pairs with ground truth and respective model predictions with and without PLs here for a complex urban scene.
(a) Preimages. (b) Postimages. (c) Ground truth. (d) FC-siam-diff PL. (e) FC-siam-diff no PL. (f) ChangeFormer PL. (g) ChangeFormer no PL. (h) BIT PL. (i) BIT
no PL.

significant margin. In both specifications, SemiSiroc exceeds
the no PL baseline again visibly.

In the lower panel, we compare FC-Siam-diff against versions
with fewer training data (25% and 50% of the aforementioned
training set). Interestingly, the performance of SemiSiROC
increases only marginally with additional real training data.
This may indicate that a large part of potential gains through

additional training data could already have been exploited by
the PLs. Conversely, the gap between PL and no PL gets smaller
with 16 training cubes. Then, performance from 16 to 32 cubes
drops slightly, which is unexpected. One reason could be that the
additional training cubes are somewhat more unrepresentative
of the remaining cubes on the other side of the globe compared
to the previous cubes. The highest scores with and without PLs
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TABLE II
QUANTITATIVE RESULTS DYNAMICEARTHNET WITH DIFFERENT PLS

TABLE III
ABLATION STUDY: VARYING THE TRAINING SET SIZE

TABLE IV
ABLATION STUDY: ROBUSTNESS TO FINETUNING LOSS

are achieved with the maximum number of training cubes of
64, which is about 85% of our dataset with over 1000 image
pairs, where the rest is used for testing and validation. Still, the
PL specification remains better than its baseline with a sizeable
gap. Overall, the main takeaway remains unaffected. With both
a few and a larger amount of labels, SemiSiroc is an effective
strategy for CD on this dataset.

2) Varying the Finetuning Loss: However, the edge of our
strategy may be specific to the loss combination used. Therefore,
we test the robustness of our results with other losses at the

finetuning step in Table IV for ChangeFormer, BIT, and FC-
Siam-diff. We do not vary the PL loss here as this would leave the
baselines without SiROC pretraining unaffected. In total, there
are six specifications per model given three loss combinations
each. The MIOU scores are identical to Table I.

The choice of the finetuning loss leaves SemiSiROC largely
unaffected with minor differences in scores. It is marginally
better in accuracy and MIOU compared to the MIOU loss and
slightly lower in terms of Mean F1. The focal loss baseline with
FC-Siam-diff is slightly stronger than with MIOU but still lacks
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TABLE V
ABLATION STUDY: PL TRAINING NOT ON TEST IMAGES WITH SIAMUNET

TABLE VI
ABLATION STUDY: DIFFERENT CONFIDENCE SPLITS

behind the comparable SemiSiROC specification by about 9 p.p.
in accuracy, 4 p.p. in MIOU, and 2 p.p. in Mean F1.

Expectedly, training with a cross-entropy (CE) loss pushes
the FC-Siam-diff baseline to almost exclusively predict the
majority no change class. This results in an accuracy high score
of almost 0.80, which even marginally surpasses the respective
SemiSiROC score although with a higher standard deviation.
However, the corresponding Mean F1 score, which is compa-
rably sensitive to large discrepancies in predictive performance
across the classes falls behind by almost 7 p.p. to the SemiSiROC
CE score.

For the ChangeFormer model, the observations of the MIOU
finetuning seem to be confirmed. Similar to FC-Siam-diff, CE
training leads to the prediction of mostly no change. The FL
results are somewhat better than the MIOU results but still
comparably bad. Overall, Table IV confirms the impression of
the effectiveness of our semisupervised strategy.

At last, the results for the BIT model mirror the aforemen-
tioned results. Pseudolabeling is highly effective across all cat-
egories with an FL or MIOU loss. With CE, the model again
tends to overfit largely to the no-change class, which is why the
accuracies are higher. Even though the no PL version with CE
loss reaches the highest accuracy among BIT models, the results
are visibly unbalanced. While the PL version lacks behind 3 p.p.
in accuracy, it makes more balanced choices with more than 8
p.p. more MF1.

3) Results on Unseen Geographic Areas: Note that for the
two previous tables, we did not restrict the PLs to be outside
of the test set. While during training, no model sees any actual
labels from the test set, one could argue that the images of the
test set may be advantageous for our strategy.

To ensure that our strategy is effective also on cubes that were
also not part of the PL training, we split the former test set in two
where we use the western half from the perspective of Fig. 1 for
PL training and the eastern half for testing with the FC-Siam-diff
as the most effective model overall. The respective scores are
reported in Table V and cannot be directly compared to the scores
of previous tables anymore because of the difference in the test
cubes. Still, the PL step remains better in comparison by a wide

margin that seems even bigger than in previous comparisons.
The gap is substantial at 15 p.p. in accuracy and 7 p.p. in MIOU.

4) PL Filtering: Another ablation study concerns the effec-
tiveness of the PL filtering. Since labels are limited, the prese-
lection discards additional information, which may be useful in
training. Therefore, we mix up the cube selection with a random
selection and the lowest 25% in confidence. The respective
results are reported in Table VI . The top 25% cubes score
best in terms of accuracy and MIOU and fall just short of
the random selection in terms of MF1. Still, with a difference
of almost 3 p.p. with similar MIOU and F1 values, it seems
that the confidence prefiltering indeed extracts meaningful PLs,
which result in more effective learning. Additionally, we notice
decreasing marginal returns of adding a higher fraction of PLs in
our case. Using the top half or even all cubes with their respective
PLs results in a similar performance than only using the top
quarter. Therefore, we choose the threshold of 25% for more
efficient training. Even though SiROC PLs improve performance
already without filtering, the confidence selection further pushes
the CD performance.

E. OSCD Results

To further investigate the transferability and generizability
of the proposed approach, we evaluate SemiSiROC also on
OSCD [23], which is a widely used binary CD benchmark based
on Sentinel-2 with a focus on urban regions. The results of our
experiments are presented in Table VII. The models used are
identical to the ones in Table I. We merely apply them to the
OSCD test set instead of the DynamicEarthNet test set directly
to analyze the transferability of models. Similar to Table I, we
test a variation with additional PL pretraining and without it for
each model. At first, FC-Siam-diff [23] remains a strong model
and achieves an average accuracy of above 95% with a MIOU of
55.47% and an MF1 score of 62.06% across the five runs. There
is a notable difference across all three scoring criteria between
the PL and the no PL version. Most significantly, accuracy drops
about 15 p.p. without DynamicEarthNet-based PL pretraining.
This is the case even though both models were trained with
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TABLE VII
QUANTITATIVE RESULTS OSCD TEST SET TRAINED ON DYNAMICEARTHNET AND GROUPED BY PL USE

real DynamicEarthNet labels. Interestingly, the accuracies are
in the range (94–96%) of FC-Siam models in [23] based on
supervised training on OSCD, whereas our approach does not
use OSCD labels at all. The contrast to no PLs gets even larger
for ChangeFormer although some of the ChangerFormer models
seem to tilt toward predicting mostly change on this dataset,
which results in unstable average performance. Even when
excluding these runs, however, the maximum performance of
ChangeFormer on the OSCD test set is 74.13% accuracy, 41.86%
MIOU, and 51.71% which is substantially below the average
with PLs. Third, BIT model PLs is arguably the best model
here since it is only slightly inferior to FC-Siam-diff in accuracy
but achieves high scores in MIOU and MF1 with 55.85% and
64.22%, respectively. Again, the difference to no PLs is large
across all categories. Overall, the OSCD results confirm the
previous impression that PL pretraining with SemiSiROC can
be highly effective in optical CD applications.

IV. DISCUSSION

A. Comparing Teacher and Students

The previous section outlines the effectiveness of SiROC
as an unsupervised teacher model for CD with limited labels.
This is because it is an effective method and can prioritize PLs
based on a well-calibrated confidence. The mechanism for these
improvements seems to be higher robustness to false positives
because of acquisition conditions and more refined shapes of
changes.

Since SiROC models analyze how much a pixel changes
in comparison to its neighborhood, it seems intuitive that it
would guide a student model toward higher robustness to false
positives. Consider the example of Fig. 2. Grassland seems much
greener in the post images but since this affects virtually all
pixels in the grassland neighborhood of a pixel, SiROC would
not necessarily view this as change. This is something the student
models seem to pick up on without modeling this explicitly.
Another property of SemiSiROC seems to be more refined
change shapes, which is also a strength of the initial SiROC
model [39]. This may incentivize the student model to learn
more about likely shapes and spatial dependencies of changes.

B. Relative Weakness of Transformer Models

Second, we notice that throughout our results, the two trans-
former models seem to perform worse compared to the siamese
UNet. This results in large gains through PL pretraining and
underlines the effectiveness of our strategy. There are several

possible explanations for this relative weakness. A likely can-
didate is model size and label availability. ChangeFormer, in
particular, is a large model, which makes it data hungry and
its success on other datasets such as Levir-CD in [21] may be
related to the fact that more labels are available there. This seems
plausible for Levir-CD, which was about 10x more labeled pixels
than the binary DynamicEarthNet we use here.

However, DSIFN only has 25% more labeled pixels than our
dataset. Therefore, another reason could be that both of these
methods have been tested in the context of urban CD only
with a focus on buildings. Maybe the different kinds of change
applications across the globe within DynamicEarthNet pose a
challenge to these models and the smaller siamese model adjusts
to this more quickly. Nevertheless, the SemiSiROC framework
shows effectiveness for all the methods we tested here and shows
promise for CD applications with optical data in practice. Our
model pretrained with PLs converges faster during fine tuning
(i.e., training with actual labels). Thus, our proposed method
reduces the time requirement of the training phase with actual
samples.

V. CONCLUSION

Monitoring changes of the Earth’s surface over time with
satellite imagery is an integral part of remote sensing. In
this article, we combine unsupervised and supervised tech-
niques in a semisupervised framework. This framework, called
SemiSiROC, relies on pretraining a student model with PLs
that we filter by confidence. This enables the student model
to learn from additional, meaningful high-confidence examples
in a pretraining step before finetuning with actual labels. We
evaluate SemiSiROC with three different supervised backbones:
FC-Siam-Diff, ChangeFormer, and BIT. We evaluate the models
with and without filtered PL pretraining on a binary version of
the DynamicEarthNet benchmark that is based on Planet Fusion
imagery with 3-m resolution. We pick only the cubes with the
25% highest confidence scores during pretraining. For all three
models, we find a notable boost in performance for our baseline
specification in Table I with eight cubes, which corresponds
to 124 training scene pairs with real labels. Additionally, we
outline that SemiSiROC remains competitive in the eye of
semisupervised student–teacher baselines based on DCVA and
CVA PLs.

Further, we evaluate the SemiSiROC models on scenes not
seen during PL training, which results in similar performance
gains. This ensures that the learned features are not specific
to scenes close to the PLs. Even with 64 training cubes with
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over 1000 labeled pairs, SemiSiROC is effective compared
to its non-PL baseline, where gains are still large. Additional
evaluations on the OSCD benchmark confirm the effectiveness
of our SemiSiROC strategy also on an urban CD dataset based on
Sentinel-2. Qualitative inspections of the predictions shed light
on what the teacher model seems to teach its students: Compared
to its no PL counterparts, the SemiSiROC models predict more
refined shapes and seem to be less sensitive to false positives.

Our results point toward several potentially promising future
research directions. At first, our work could be applied to related
tasks such as multiclass CD or different input sensors. Second,
more experiments are necessary to understand the role of teacher
models in spatial generalization generally and particularly
in CD.
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