Kondmann, Lukas und Saha, Sudipan und Zhu, Xiao Xiang (2023) SemiSiROC: Semisupervised Change Detection With Optical Imagery and an Unsupervised Teacher Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, Seiten 3879-3891. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3268104. ISSN 1939-1404.
PDF
- Verlagsversion (veröffentlichte Fassung)
15MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10106115
Kurzfassung
Change detection (CD) is an important yet challenging task in remote sensing. In this article, we underline that the combination of unsupervised and supervised methods in a semisupervised framework improves CD performance. We rely on half-sibling regression for optical change detection (SiROC) as an unsupervised teacher model to generate pseudolabels (PLs) and select only the most confident PLs for pretraining different student models. Our results are robust to three different competitive student models, two semisupervised PL baselines, two benchmark datasets, and a variety of loss functions. While the performance gains are highest with a limited number of labels, a notable effect of PL pretraining persists when more labeled data are used. Further, we outline that the confidence selection of SiROC is indeed effective and that the performance gains generalize to scenes that were not used for PL training. Through the PL pretraining, SemiSiROC allows student models to learn more refined shapes of changes and makes them less sensitive to differences in acquisition conditions.
elib-URL des Eintrags: | https://elib.dlr.de/199715/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | SemiSiROC: Semisupervised Change Detection With Optical Imagery and an Unsupervised Teacher Model | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 April 2023 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 16 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3268104 | ||||||||||||||||
Seitenbereich: | Seiten 3879-3891 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | semisupervised, change detection | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Camero, Dr Andres | ||||||||||||||||
Hinterlegt am: | 28 Nov 2023 12:48 | ||||||||||||||||
Letzte Änderung: | 28 Nov 2023 12:48 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags