Beker, Teo and Ansari, Homa and Montazeri, Sina and Song, Qian and Zhu, Xiao Xiang (2023) Deep Learning for Subtle Volcanic Deformation Detection With InSAR Data in Central Volcanic Zone. IEEE Transactions on Geoscience and Remote Sensing, 61, pp. 1-20. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2023.3318469. ISSN 0196-2892.
PDF
- Published version
18MB |
Official URL: https://ieeexplore.ieee.org/document/10293156
Abstract
Subtle volcanic deformations point to volcanic activities, and monitoring them helps predict eruptions. Today, it is possible to remotely detect volcanic deformation in mm/year scale thanks to advances in interferometric synthetic aperture radar (InSAR). This article proposes a framework based on a deep learning model to automatically discriminate subtle volcanic deformations from other deformation types in five-year-long InSAR stacks. Models are trained on a synthetic training set. To better understand and improve the models, explainable artificial intelligence (AI) analyses are performed. In initial models, Gradient-weighted Class Activation Mapping (Grad-CAM) linked new-found patterns of slope processes and salt lake deformations to false-positive detections. The models are then improved by fine-tuning (FT) with a hybrid synthetic-real data, and additional performance is extracted by low-pass spatial filtering (LSF) of the real test set. The t-distributed stochastic neighbor embedding (t-SNE) latent feature visualization confirmed the similarity and shortcomings of the FT set, highlighting the problem of elevation components in residual tropospheric noise. After fine-tuning, all the volcanic deformations are detected, including the smallest one, Lazufre, deforming 5 mm/year. The first time confirmed deformation of Cerro El Condor is observed, deforming 9.9–17.5 mm/year. Finally, sensitivity analysis uncovered the model’s minimal detectable deformation of 2 mm/year.
Item URL in elib: | https://elib.dlr.de/198763/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Deep Learning for Subtle Volcanic Deformation Detection With InSAR Data in Central Volcanic Zone | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 24 October 2023 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 61 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2023.3318469 | ||||||||||||||||||||||||
Page Range: | pp. 1-20 | ||||||||||||||||||||||||
Editors: |
| ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep learning (DL), interferometric synthetic aperture radar (InSAR), minimal deformation analysis, volcanic deformation simulation, volcanic deformation | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence, R - AI4SAR, R - SAR methods | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Beker, Teo | ||||||||||||||||||||||||
Deposited On: | 06 Nov 2023 13:56 | ||||||||||||||||||||||||
Last Modified: | 26 Mar 2024 13:20 |
Repository Staff Only: item control page