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Abstract— Subtle volcanic deformations point to volcanic activ-
ities, and monitoring them helps predict eruptions. Today, it is
possible to remotely detect volcanic deformation in mm/year
scale thanks to advances in interferometric synthetic aperture
radar (InSAR). This article proposes a framework based on
a deep learning model to automatically discriminate subtle
volcanic deformations from other deformation types in five-year-
long InSAR stacks. Models are trained on a synthetic training
set. To better understand and improve the models, explainable
artificial intelligence (AI) analyses are performed. In initial
models, Gradient-weighted Class Activation Mapping (Grad-
CAM) linked new-found patterns of slope processes and salt lake
deformations to false-positive detections. The models are then
improved by fine-tuning (FT) with a hybrid synthetic-real data,
and additional performance is extracted by low-pass spatial filter-
ing (LSF) of the real test set. The t-distributed stochastic neighbor
embedding (t-SNE) latent feature visualization confirmed the
similarity and shortcomings of the FT set, highlighting the
problem of elevation components in residual tropospheric noise.
After fine-tuning, all the volcanic deformations are detected,
including the smallest one, Lazufre, deforming 5 mm/year. The
first time confirmed deformation of Cerro El Condor is observed,
deforming 9.9-17.5 mm/year. Finally, sensitivity analysis uncov-
ered the model’s minimal detectable deformation of 2 mm/year.

Index Terms— Deep learning (DL), interferometric synthetic
aperture radar (InSAR), minimal deformation analysis, volcanic
deformation simulation, volcanic deformation.

I. INTRODUCTION

ROUND 1350 volcanoes are active today; there are
50-90 eruptions per year, and 40-50 volcanoes continue
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eruptions at any given time [1]. Volcanic deformation is statis-
tically linked to eruptions [2] and is a dominantly preeruptive
sign of volcanic activity [3]. Hence, timely detection of
volcanic preeruptive activities is crucial for understanding
and characterizing the tectonic processes [4], [5] and pre-
dicting the approximate time of an eruption [6]. Volcanoes
have been monitored by ground monitoring stations, which
measure seismicity patterns, surface strain, and microgravity
changes. Traditionally, the areal change has been measured
using multiple measuring stations or wireless sensor networks
[7], [8]. Nowadays, the areal deformation can be measured
accurately by a remote sensing technique, interferometric
synthetic aperture radar (InSAR) [9], [10], [11], substituting
the in situ measurements.

The deformations in a satellite’s line of sight (LOS) dur-
ing an observed period can be derived from interferograms.
An interferogram is a phase difference map of two SAR
images acquired on the same track at two time points [12].
Accordingly, interferogram time series [13], consisting of
multiple interferograms, is further processed to estimate the
long-term deformation of the land surfaces through multipass
SAR Interferometry techniques, such as persistent scatterer
interferometry (PSI) [14], [15], [16], distributed scatterer
interferometry (DSI) [15], [17], [18], or differential SAR
tomography [19], [20]. However, analyzing big InSAR data is
time-consuming and demands expertise. Therefore, automatic
information extraction from big InSAR data is critical for
large-scale volcano monitoring and timely decision-making.

Deep learning (DL), which usually uses convolutional layers
to extract spatial features from input data, has been widely
applied to SAR and InSAR in general [21] and specifically
to detect volcanic deformations in interferograms [22], [23],
[24] and filter out the noise from long-term time series [25],
[26], [27]. However, automatic subtle volcanic deformations’
detection at mm/year level using DL is still underexplored.
Besides, previous research generally focused on improving the
DL structure and training process, which is the model-centric
method [22], [24], [25], [26], [28], [29]. However, our discov-
ery reveals that the main challenges remain related more to the
data than the model: the volcanic deformations are swallowed
by residual atmospheric noise; real data (RD) are scarce
and imbalanced with significantly fewer volcanic deformation
samples; and nonvolcanic deformations that accumulated over
the observed period are prone to be confused with volcanic
deformations by the DL models. In this regard, model-centric
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Fig. 1.

Example of (left) volcanic and (right) nonvolcanic deformations in (top) deformation maps and (bottom) rewrapped data. The volcanic deformation

is shown as a round conical or convex hill in the middle of the image, which is swallowed by other nonvolcanic deformation patterns.

methods bring limited gains, according to our experiment
results. Therefore, we apply a data-centric approach, which
improves the data used to train the model to increase detection
accuracy.

In this article, we proposed a CNN framework for subtle
long-term volcanic deformations’ detection in stacked InSAR
deformation maps. Deformation maps’ derivation removes
most of the noise in the time series, increases the signal-
to-noise ratio (SNR), and compresses the interferogram time
series into a single map [30], [31], [32], [33], thus significantly
reducing the amount of data. A simulated dataset is used as the
training set to train the model, and all RDs are reserved as the
test set. Subsequently, analysis using Gradient-weighted Class
Activation Mapping (Grad-CAM) [34] uncovered the influence
of nonvolcanic deformations. To rectify the model, a data-
centric approach is employed. We fine-tune the initial model
with a hybrid set of simulated volcanic deformations and
the real nonvolcanic deformations patterns. Besides, to make
test data more similar to the synthetic data, we used a
low-pass spatial filtering (LSF) to remove small patterns in
the real deformation maps. Furthermore, the similarity of
fine-tuning (FT) and test sets is presented with t-distributed
stochastic neighbor embedding (t-SNE) [35] by visualizing
the extracted features [36], [37]. Finally, an analysis is per-
formed to determine the model’s sensitivity to the volcanic
deformation scale.

In this work, we present the following contributions.

1) We generated a large-scale, long-term subtle volcanic
deformation detection dataset covering 46 volcanoes in
the Atacama desert. The collected Sentinel-1 SAR image
time series are preprocessed to allow millimeter-per-
year scale deformation detection. Besides, a synthetic

set that consists of 330848 deformation maps is

simulated.

A subtle volcanic deformation detection pipeline based

on DL models is proposed in this article. We compared

several DL models and devised a data-centric approach
to improve detection accuracy and reduce false positives

(FPs).

3) We utilized two explainable artificial intelligence (AI)
tools for analyzing the results. First, Grad-CAM is used
to visualize the model’s activation, where we found that
the models confuse salt lakes and slope-induced signals
with volcanic deformation signals. Besides, the t-SNE
dimension reduction tool is applied to compare features
extracted from FT and test sets.

4) We propose a sensitivity analysis to expose the model to
an extended range of volcanic deformations and deter-
mine the most subtle detectable volcanic deformation by
the model.

2)

II. RELATED WORK

A. Challenges in Volcanic Deformations’ Detection

Compared with common target detection problems, volcanic
deformation detection is a challenging task. Usually, volcanic
deformations are not observable from high-resolution space-
borne optical data. In InNSAR data, the volcanic deformation
patterns often appear as protruding and/or subsiding round
or eight-shaped objects in the unwrapped deformation map,
as seen in Fig. 1. However, the shape of these patterns is
often modified by the topography and varies from volcano to
volcano.

The volcanic deformation detection task also suffers from
data shortage. On the one hand, volcanic activities are severely
rare, unlike other types of changes. There are only less than
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1500 active volcanoes in the world. However, nonvolcanic
deformations such as slope processes and salt lake activi-
ties are common. As a result, the data are imbalanced. For
example, 633 out of 775 samples contain only nonvolcanic
deformations in our case. On the other hand, SAR interfer-
ometry processing needs expert knowledge and usually takes
time. Therefore, the data that can be used to train the models
are very limited.

Besides, volcanic deformations are usually swallowed by
noise. The collected data suffer from atmospheric noise,
which makes it not possible to detect subtle deformations.
Although, after PSI processing, atmospheric noise can be
reduced, the residual atmospheric noise remains; although
the subtle long-term volcanic deformations are accumulated,
there are more nonvolcanic deformation patterns. As shown
in Fig. 1, the deforming volcano signal in the middle of the
image is hidden by atmospheric noise of various shapes and
intensities.

In summary, the volcanic deformation detection task is
mainly restricted by data availability and data quality. The
detection performance varies with the used datasets. In Table I,
we compared the different datasets used and achieved perfor-
mance by existing models. In Section II-B, we elaborate on
how previous works deal with these challenges and improve
their models.

B. Existing Volcanic Deformations’ Detection Methods

Fig. 2 and Table I show the overview of the current state of
volcanic deformation detection from InSAR data using DL.
The approaches can be distinguished by the used data type
and selected modeling approaches.

First, the works differ in what type of input data is used
and how the data are preprocessed. Short-term interferograms
[I1 in Fig. 2] are used in many larger scale volcanic deforma-
tion detection studies [22], [23], [24], [28], [29], [38], [43],
while long-term deformation detection using time series [II1]
has been utilized in [25], [26], [27], [39], and [40]. These
can be further split by how the atmospheric correction is
handled: separately by removing atmospheric phase screen
(APS) [I1a and II1a] [46] or by leaving this to be handled by
DL [I1b and II1b] [22], [23], [24], [25], [26], [28], [29], [38],
[41], [43]. Albino et al. [46] stated that atmospheric correction
is of great importance for classification models, especially in
steep tropical volcanoes. To the best of our knowledge, the
velocity maps [II2] were utilized only for denoising task [25]
and were not utilized before this study in the classification
task.

Second, the preprocessing steps generate products of
different levels of quality and, thus, impact the models’
performances and detection sensitivity. Previous models use
either wrapped [III1b] [22], [23], [24], [28], [29], [38], [39],
[41] or unwrapped data [IlIla] [24], [25], [26], [41], [46].
Unwrapping data need additional steps consuming time and
resources. In some cases where the unwrapped data are
rewrapped, depending on which wavelength is used, the rewrap
methods are divided into overwrapping [IIIlc] and regular
rewrap (using the original satellite wavelength) [III1b]. Studies
[24], [41] show that fringes present in wrapped data facilitate
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convolutional neural networks (CNNs). Therefore, overwrap-
ping is anticipated to increase models’ sensitivity [39]. On the
other hand, additional data, digital elevation model (DEM),
the inclusion of amplitude, and so on can potentially benefit
the models [III2]. Nevertheless, Gaddes et al. [24] did not
show the benefits of additional channels for the transfer
learning model. However, adding DEM data in the middle
of a denoising model did help remove the residual noise from
the data [25].

Third, the gap between training and test sets impacts the
results. Synthetic training sets [III3] were proved to be helpful
in training models when insufficient deformation data are
available [24], [25], [26], [28], [29], [38], [39]. The param-
eters for simulations can be extracted empirically [III3b] or
statistically [I[I3a] by variogram modeling [47]. To the best of
our knowledge, the statistical approach explored in this work
[47] has not yet been employed.

The data augmentation methods [III4] are helpful for
increasing the number of RD training samples and the
robustness of the model [22], [23], [43], [45]. However,
augmentations were avoided in synthetic training datasets for
more controlled and realistic sample distribution.

While test data should be taken from a separate distribution
from training data, the domain should be kept the same.
In cases where that is completely impossible (e.g., a model
trained on imperfect synthetic data, which often keeps dif-
ferences from RD), spatial filtering [IV1] could improve the
similarity. That is tested in this study. Edge detection [IV2]
was used [22], [23], [38] to exclude the cases of interferograms
that do not contain strong deformations, therefore reducing
the number of samples tested by the model (decreasing run-
ning time) and increasing the performance by removing the
possibility of FP classifications by the model.

Most work can be split into two basic modeling tasks:
denoising and detection, with which other techniques can be
applied. Denoising models clear the images of atmospheric
noise or unwanted deformations so that volcanic deformation
and its scale can be easily identified. Detection models have
focused on handling the noise and finding the volcanic defor-
mations in large amounts of data. The modeling process of
the deformation detection can be split into model-centric [V]
and data-centric [VI] approaches. The model-centric approach
focuses on model architecture improvements to increase
performance. It can be divided by the implemented DL tech-
niques: self-supervised learning [V1] [43], [44], classification
[V2] [23], [24], [28], [38], [41], [42], [43], [43], object detec-
tion [V3] [24], semantic segmentation [V4] [41], denoising
[VS5] [25], [26], [27], [28], [40], and, a subcategory of these,
the multioutput approach [V6] using single architecture and
double-headed method to tackle different tasks simultaneously
[24]. While most papers focused on binary classification,
Gaddes et al. [24] use a multiclass approach to classify the
types of volcanic deformations into point/sill and opening
dyke.

The data-centric approach improves the model by better
understanding and adapting the data. To understand the data
and model’s weak points, explainable Al (XAI) techniques are
used [VI1]. So far, CAMs [42], [43] and case studies have been
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utilized to understand the models better. The models can be such as F1 score and precision, often are sensitive to skew
improved through different data processing adjustments and data distribution, which is often the case in real volcanic
FT [VI2]. deformation datasets. In these cases, more elementary metrics,

Due to the differences in the used datasets, comparing all true-positive rate (recall, TPR) and false-positive rate (FPR),
those models fairly is not easy. Most comprehensive metrics, are more informative. Also, the area under the curve receiver
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operating characteristic (AUC ROC) is an informative metric
as it combines TPR and FPR and is unaffected by the skew
[48]. The datasets and achieved model performances are
summed up in Table I.

Using edge detection and DL model trained on synthetic
data, [38] reports 90.4% recall [38/42 true positive (TP)],
0.98% FPR [295 FP], and 93.12% AUC ROC using their best
model on their test set of 30249 interferograms and 42 deform-
ing cases. In [39], they report the minimal deformation
detection of 3.5 cm/year after overwrapping is applied.

Another approach training a multioutput DL model trained
on 20000 synthetic data intended for three-class classification
and localization of the volcanic deformations [24] achieved
40% TPR (8/20 TP), 19% FPR (6/32 FP), and accuracy of
65% (34/52 correct class) on 52 interferogram classification
task, and after inclusion of 173 real samples to the training set,
80% TPR (16/20 TP), 16% FPR (5/32 FP), and 83% accuracy
(43/52 correct class) are achieved.

It has been shown that self-supervised learning signifi-
cantly increases robustness, and the models perform well in a
broader range of data [43]. In contrast, the transfer learning
model of Inception v4-ImageNet fine-tuned on 7536 samples
of real interferograms outperformed the compared models,
giving the 96.87% TPR (31/32 TP) and 12.5% FPR (4/32 FP)
out of balanced 64-sample validation set. The same model
did not perform as well on the out-of-distribution test set.
ResNet50-SimCLR achieved 85.89% TPR (347/404) and
2.74% (10/365 FP) out of a slightly imbalanced 769 samples
set, containing ascending and descending, and filtered and
unfiltered data.

To sum up, the classification approach is the most explored
and the most reliable method for volcano detection in InSAR.
More available and easily approachable short-term interfero-
grams are widely used, while few studies focus on long-term
velocity maps. RDs are often limited. Having a larger quantity
of it for training is beneficial. When sufficient RDs are unavail-
able, synthetic data can help, but it introduces a problem
of bridging a domain gap between the synthetic data and
RD. The reported model performance varies and depends on
the datasets used. While the majority of research has been
focused on model-centric approaches, few works point out that
data-centric improvements could make a larger impact. High-
performing models have been published, but most approaches
do not report the scale of detected volcanic deformations.
The data SNR and the model’s sensitivity to the scale of the
volcanic deformation play a significant role when estimating
models and models’ metrics. The smallest reported detection
is of 35 mm/year. In addition, the explainability of the models
is underexplored. Often, single-case studies are shown, which
are very limiting and cannot present the model capabilities
with statistical significance.

III. STUDY AREA AND DATASETS
A. Study Area

The study area covers the Andean Central Volcanic Zone
(see Fig. 3), the Atacama Desert with 1113 volcanic edi-
fices [49], of which a fraction is still active today. It contains
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high elevation differences of high planes and mountains of
more than 6000 m, mainly covered by sand, stone, and
lava, and is dotted with salt lakes. Slope processes, such as
weathering, erosion, transport, and deposition of the material
[50], [51], are common in the steep mountainous regions,
which are prevalent in our InSAR stack data. Furthermore, the
area has a high density of volcanoes and a sparse population
distribution [9]. Therefore, remote sensing is the optimal way
to monitor this area.

B. InSAR Data

The gathered Sentinel-1 data cover 46 potentially active
volcanoes in this region from October 2014 to June 2020;
35 interferometric stacks, with track numbers ascending 047,
076, and 149 and descending 010, 054, 083, 127, and 156, con-
sist of 48—144 interferograms each (generally an acquisition
every 6-12 days), spanning 4.5-5.7 years.

Different InSAR error sources must be considered in the
processing chain to achieve high precision and accuracy in
the deformation estimation. These error sources include atmo-
spheric errors [52], [53], solid Earth tides [54], and subtle
temporally short-lived signals, which may be confused with
surface deformation [55]. If not corrected, the delays in a
single interferogram could amount to tens of centimeters error
[56]. We use IERS 2010 convention [57] to correct solid
Earth tides, ECMWF ERAS reanalysis data to correct tropo-
spheric delay, and Tec maps CODE data to correct ionospheric
delay using SAR Geodesy Processor (SGP) of DLR [58].
In addition, to overcome the sparsity of identified points for
estimation, combined PSI [14], [15], [16] and DSI [32], [59]
are performed to create stacked deformation maps. Processed
this way, InSAR deformation maps achieve accuracy in the
mm/year level [33].

The geocoded deformation maps are converted to wrapped
interferograms in two steps. First, the map is scaled by the
temporal baseline to achieve cumulative surface displace-
ment. Second, the displacement is wrapped between —m
and 7, given the Sentinel-1 wavelength. The interferograms
generated as such are expected to be free from erroneous
atmospheric and short-lived bias signals and have a high SNR.
The accuracy of such interferograms in showing the surface
displacement is related to the accuracy of the techniques for
correcting the error sources. The resulting dataset is referred
to hereafter as RD to distinguish it from the simulated data.
RD samples containing volcanic deformations are used only
to validate our method. RD samples over known volcanoes are
used for validation and the rest for fine-tuning the model.

The velocity maps created this way are cropped around the
potentially active volcanoes and filtered out if they contain
missing values. They are resampled using an averaging win-
dow of 200 m. This gave 32 frames of 512 x 512 pixels and
102.4 x 102.4 km? (achieving pixels of 200 m), centered over
24 volcanoes. For feeding the data to the model, the whole of
the volcanic deformation must be included in a patch while
keeping the patch not excessive in size. To this end, the frames
are split into patches of 256 x 256 pixels, with a stride of
64 pixels, producing 25 patches for each frame.
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Examined Andean Central Volcanic Zone. The area is densely packed with volcanoes but also with slopes and salt lakes. The InSAR deformation

patterns caused by slope-induced signals and salt lakes are widely distributed in the deformation maps, which can confuse the detection models from detecting

volcanic deformation patterns.

C. Simulated Data

The training set comprises synthetic volcanic deformations
and residual atmospheric noise patches. After the atmospheric
correction, the latter remains in the interferogram and is
considered when creating a simulated dataset with a simi-
lar distribution of the RD set. Thus, half of the simulated
residual atmospheric noise is added to the volcanic defor-
mations, and half is used as the nondeformation class. For
the residual atmospheric noise simulation, an assumption is
made that most of the stratified atmosphere is eliminated by
corrections algorithms and PSI [60], [61]. Therefore, resid-
ual noise patterns are statistically extracted from RD using
variogram modeling [47] and then simulated using a Monte
Carlo approach [27]. A difference in the noise scale between
ascending and descending tracks (1.6598 =+ 0.3873 and
0.9205 £ 0.03438 mm/year, respectively, Fig. 4) is observed
due to different acquisition time in a day [47].

Volcanic deformations are simulated with a volumetric
source using the compound dislocation model (CDM) [62].
The simulations correspond to 23 631 diverse volcanic patterns
of the sill, sill-like, Mogi-like, near-equidimensional volu-
metric source, oblate ellipsoidal source, and penny-shape-like

crack. Thus, the synthetic volcanic deformations depict global
variance in volcanic deformations.

Originally, the scale of volcanic deformations was set to
be 0.2-20 mm/year. The distribution of volcanic deformations
is exponential and skewed toward more minor deformations.
This in hand meant that a significant fraction of the training set
might not have an easily distinguishable volcanic uplift when
covered by atmospheric noise, leading to the model being
trained to detect spurious correlations. Therefore, an additional
refined set is created.

The synthetic set is refined by rescaling the volcanic
deformations to be the same or larger than © =+ 3o
of atmospheric noise. For ascending tracks, the corrected
range is from 3-20 mm/year and, for descending tracks,
1.2-20 mm/year. The volcanic deformations below the thresh-
old are redistributed to normal distribution centered on
8-mm/year deformations, which is found to be the most com-
mon deformation scale in the data. The original distribution
and the new distribution can be seen in Fig. 5.

The simulated data are then projected to similar LOSs as
RD. The LOS parameters are picked from the RD if they
significantly differ from others. Otherwise, they are grouped
and averaged to represent morefold data. This grouping results
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Fig. 4. Separately modeled variograms for ascending and descending tracks. Different statistical functions are explored to determine the values for modeling
the variograms. The ascending track maintains a higher noise level and variance. (a) Ascending. (b) Descending.
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Fig. 5. Histogram of the maximum volcanic deformation present in training
set before and after refinement. The noise thresholds of 1.2 mm/year for
descending and 3 mm/year for ascending geometry are marked. Refined data
redistribute the samples below the threshold to Gaussian distribution centered
around 8 mm/year.

in five descending and two ascending sets of LOS parameters.
To create an equal amount of data for each LOS, we created
seven subsets of simulated data. The volcanic simulations
are reused, and the different residual atmosphere data are
simulated for each set, amounting to 330 848 samples. Of all
the simulated samples, 90% is used for training, 5% for
validation, and the rest for synthetic testing.

When using simulation data to solve the problem of the
shortage of training data, there is a domain gap between the
synthetic data and RD. The velocity map data span six years,
over which terrain suffers many changes. Slope processes,
erosion, salt lake mining, and level changes contribute to the
final product. None of these patterns are easy to simulate and,
therefore, have not been considered in the training data. As a
result, they constitute a majority of the domain gap.

IV. METHOD

To automate the detection of such deformations and timely
monitor the activity of volcanoes, we use a DL model to

detect the presence of slow, sustained volcanic deformations
in velocity maps. We use the detection approach formulated
as a binary classification problem.

Initially, the models are trained on synthetic data with vol-
canic deformation and nondeformation classes. Explainability
analysis via Grad-CAM helps guide the improvement process
and identifies the model’s difficulties. The initial synthetic set
is refined accordingly, and the model is fine-tuned. Spatial
filtering and fine-tuning using a hybrid synthetic-real set help
improve detection accuracy. Finally, the sensitivity analysis
tests the model on an extended range of data and uncovers the
model’s minimal detectable deformation.

A. CNN Models

In [43], it is demonstrated that transfer learning from
models trained in optical data, such as ImageNet, provides less
meaningful features for the volcanic detection tasks. Therefore,
we train and validate the models entirely using simulated data
and test on the real dataset.

Due to their popularity in classification tasks and the
advantage of extracting and squeezing spatial features from
input images, CNNs are also used in this article. The models
use a one-channel image of 256 x 256 pixels, corresponding
to an area of 51.2 x 51.2 km?, having a spatial resolution
of 200 m as input. Different hidden layer configurations are
tested. Final binary classification probabilities are produced by
the last layer using one node with sigmoid activation.

To select the best model suited for the task, AlexNet,
VGG16-inspired architectures [63], and recent InceptionRes-
Net v2 [64] are compared in this article. Our experiment results
show that InceptionResNet v2 outperforms other models by
14% in the AUC ROC on the synthetic test set; hence, it is
selected for further experiments.

The models are trained from random initialization. The
labeled synthetic training dataset is used for training, and
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Fig. 6. Network architecture of used InceptionResNet v2 showing the layer dimensions using an image size of 256 x 256 pixels. The network consists of
stem and multiple modules of InceptionResNet A, B, and C, and reductions after them Reductions A and B, illustrated in subplots.

the models are trained using Adam optimizer [65] and cross- features [67]. The Inception ResNet v2 architecture can be
entropy loss. To select the best model, we employed the early seen in Fig. 6.

stopping mechanism. The training process is stopped when no Alexnet is chosen and used as a best-performing architec-
further loss improvement is discovered after ten consecutive ture, among the tested, for volcanic deformation detection in
epochs with a maximum of 100 epochs. With an extensive [22], [23], and [38]. It has fewer layers compared to more
training set, most models need no more than 30 training recent models, and it uses large convolutional matrices, which

epochs.

1) CNN Architectures: The InceptionResNet v2 model con-
tains residual and inception blocks, which allows it high
flexibility and increased capacity when learning to distinguish
features. Residual blocks introduce skip connection, which
improves the stability of a network allowing deeper networks
and merging low-level features with high-level features [66].
Inception blocks introduce different optimizations, such as
asymmetric convolutions, which reduces the number of param-

allows it to handle larger and more complex features.

VGG16 [63] has also been successfully applied for vol-
canic deformation detection and classification [24]. It uses
convolutional layers with small kernels (3 x 3), reducing the
number of parameters while allowing depth to handle the more
complex and larger features. Two architectures, ConvNet8 and
ConvNetl6 (the number representing the number of layers),
inspired by it are tested.

2) Detection Metrics: We use five standard detection met-
rics for evaluating the model’s performance

eters while maintaining the expressivity and extracts features TP + TN

Accuracy = (D

at different scales, small details, and mid and larger sized TP + FP + TN + FN
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the patterns of the salt lake and slope-induced signal for volcanic deformations.

. TP
Precision = —— 2)
TP + FP
TP
TPR = ———— 3)
FN + TP
FP
FPR = ——— @)
FP + TN
F1=2%— ; 5)

Precision 1 TPR

where TP, FP, TN, and FN are numbers of true-positive, false-
positive, true-negative, and false-negative samples. TPR and
FPR are true-positive and false-positive rates. Since the test
set is highly imbalanced, most metrics are skewed. Detecting
all volcanic deformations is paramount for our task (best
quantified by TPR), followed by reducing the number of false
detections (shown by the FPR).

The ROC is a curve showing TPR plotted against FPR
when the threshold is varied and is not affected by the data
skew [48]. The area under the curve is derived to evaluate
the models’ ability to balance the high detection rate and the
low false-positive rate, and is used to represent overall model
performance in this work. To trade off between TPR and FPR,
classification threshold selection is essential.

B. Fine-Tuning Strategy

Since the geographic and temporal patterns were not
accounted for in simulations, all-present slope-induced signals
and salt lakes confuse the models. To bridge this gap, the FT
step is performed.

The RD needed to be used for fine-tuning, but, since vol-
canic data were scarce, all the data on known volcanoes were
kept for testing. For fine-tuning, we use the region around the
central Andes, which does not contain volcanic deformations
or test data. The volcanic simulation data were added to half
of the extracted patches of slope-induced signal and sparse
salt lakes. This way, the balanced hybrid synthetic-real set is
created, having a deformation and nondeformation class.

Since the RDs are very scarce, the FT set is limited. For
fine-tuning the more significant parts of the model, it is nec-
essary to have a larger dataset. Therefore, we tested freezing
the model and fine-tuning only the last layer, the last two
layers, and the last two layers fine-tuned individually (last,
second last, and then last again). Our previous experiment
demonstrated that retraining only the last layer worked the
best [68], which is also adopted here.

C. Explainability Analysis

DL models are often called black box models, but,
in the past decade, there has been extensive work to improve
the explainability and interpretability of the models. While the
explainability is helpful for different purposes [69], we use it
to verify and improve the system. We apply two explainability
tools, i.e., Grad-CAM for analyzing the model’s focus and
t-SNE to visualize extracted features.

1) Models’ Activation Maps Analysis: We needed feature
attribution methods of explainability for the computer vision
tasks and classification problems. Many feature attribution
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TABLE I
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DETECTION METRICS OF INCEPTIONRESNET V2 WITH DIFFERENT TRAINING STRATEGIES. USING A REFINED SYNTHETIC TRAINING
SET AND FINE-TUNING THE AFOREMENTIONED MODEL HAVE IMPROVED THE AUC ROC BY 12.01% AND 28.52%, RESPECTIVELY.
THE HIGHEST AUC ROC OF 90.29% 1S ACHIEVED VIA FINE-TUNING THE REFINED MODEL AND TESTING IT ON THE FILTERED
DATA. BESIDES, FINE-TUNING STRATEGY AND ADJUSTING A TEMPORAL BASELINE CAN HELP IN REDUCING THE FPR

Model TP FP FN TPR?T FPR| Accuracy ¥ Precisiont F11 AUC ROC 1
Wrapped data 139 452 3 97.89 71.41 41.29 23.52 37.93 57.92
Refined 142 627 O 100.00  99.05 19.10 18.47 31.17 69.93
Spatial Filtering (LSF) 142 537 0 100.00 84.83 30.71 20.91 34.59 76.42
Fine-tuning (FT) 134 201 8 94.37 31.75 73.03 40.00 56.18 86.44
FT + LSF 62 37 80 43.66 5.85 84.90 62.63 51.45 90.29
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Fig. 8. ROC of the models on real test data, showing incremental Fig. 9. Comparison of the ROCs on the real test set of models using the FT

improvements of each technique. Finally, the improvement that the custom
temporal baseline adjustment would give is presented.

methods suffer from the independence of model randomization
and label permutation, and Grad-CAM does not [70]. It is also
one of the most reliable and least resource and time-consuming
methods for Earth observation, as shown in [71].

Grad-CAM [34] is a local post-hoc feature attribution
saliency map generation technique, which shows where in
the image the model is “looking at.” To produce a Grad-
CAM, the gradient of the output class score is determined
with respect to feature maps of a selected convolution layer
(the last convolutional layer in our case). Then, by global
average pooling the gradients, weights are obtained. Then,
a weighted combination of feature maps is followed by a rec-
tified linear unit (ReLU), giving a coarse Grad-CAM heatmap.
Furthermore, the heatmap is normalized and upscaled for
visualization.

Grad-CAM visualizations display the model’s attention map
but do not directly show the conclusion of whether the model
is well-trained or not, which can be misleading. The model’s
classification output must be taken into consideration as well.
Therefore, we scale the Grad-CAM activation maps with the
models’ probability of containing the volcanic deformation,
combining them into a fully informative visualization.

2) Visualization of Learned Features: Comparison of
extracted features from the FT and test sets via trained

approach. InceptionResNet v2 architecture demonstrates significantly better
performance in comparison to other tested models.

model can better understand the model’s function and discover
potential pitfalls. It is performed by visually comparing the
similarity of the distributions of extracted latent features from
the two sets. We use the last convolutional layer output as
the extracted features, with a dimension of 1536. To visualize
it in a low-dimensional space and keep its original modality,
a widely used nonparametric nonlinear dimension reduction
tool t-SNE [35] is employed.

It starts by converting the Euclidean distances of feature
pairs x; and x; into conditional probabilities p;; where points
x; and x; are neighbors using student’s t distribution

_exp(=lln — xj17/20?)

> s exp(—llxe — x/112/20%)
where o is a Gaussian variance centered on the point x;.
Similarly, the conditional probabilities g;; in feature pairs y;

and y; in low-dimensional space are calculated using t-student
distribution as

Dij (6)

_ (=)™
Ek;ﬁl(l + llyx — )’1”2)_1

To keep the modalities of the high-dimension data in the
low-dimensional space, the Kullback-Leibler divergence (8)

qij @)
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Fig. 10. Wide area demonstration split by the satellite track. The model detected all five deforming volcanoes that are visible in the data. TP, FP, FN, and
TN represent true-positive, false-positive, false-negative, and true-negative detections, respectively. *The visualization does not reflect the statistical results
because of the two levels of weighted averaging of overlapping patches and frames. (a) Ascending. (b) Descending.

between conditional probabilities p;; and ¢g;; is minimized,
which is achieved by minimizing KL(P | Q) using the gradient
descent algorithm

KL(P||Q) =) _ pij log
i#] Y
Then, the original high-dimension data x; are, thus, embed-
ded into a low-dimensional (2-D in our case) space and are
converted to y;. Now, we can directly compare the simulated
and RD using the converted features in 2-D space.

pij

®)

V. EXPERIMENTS
A. Initial Detection Results

The models are trained from random initialization. The
labeled synthetic training dataset is used for training; 5%
of the synthetic data is used for validation and synthetic
testing each. The models are trained using Adam optimizer
and cross-entropy loss. For the best model weights’ selection
during training, checkpoint and early stopping mechanisms are
employed. All the models are trained using a maximum of
100 epochs, with the early stop mechanism set to 10 epochs
without loss improvement before training ends. Having a
sizeable synthetic training set, most models did not need more
than 30 epochs of training.

The models are compared on unwrapped and wrapped data.
The wrapped case performed better, which the presence of
fringes can explain. Fringe is a clear border created by the
wrapped deformation over the value of 2 (a contour between
m and —m). These contours can be detected more easily by
convolution layers in models [24].

Even though the model’s performance on the wrapped
data is better, AUC ROC is low. The performance on the
synthetic validation set is similar to the training set but not
satisfactory on a real set. To correct this, the deformation scale
of simulations is checked, and a refined synthetic set is created.
The refined synthetic set does not obscure smaller volcanic
deformations; therefore, training the model is easier. This
improvement brought a 12% increase in AUC ROC between
the best models of both approaches.

B. Grad-CAM Visualization

After training the model, we generated a Grad-CAM visu-
alization map of each test sample. These models’ activation
maps are overlayed with the original images. Further analysis
is conducted to validate the model: 1) check whether high
activations are distributed over the volcano area in images
classified as volcanic deformation and 2) find the patterns over
high activation areas in FP samples.
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Fig. 12. Showcases of the unwrapped deformation maps of five deforming volcanoes. (a) Cerro El C6. (b) Cordon de Puntas Negras. (c) Lazufre. (d) Robledo.
(e) Sabancaya.

Fig. 7 shows a correct (bottom) and two false classified signal confuses the model. This is not an isolated case of
samples. The top visualization shows a strong activation signal these patterns being misidentified as volcanic deformation,
for a salt lake, and the mid shows how the slope-induced which must be corrected. Slope-induced signals and salt lakes
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t-SNE transformation of feature space of fine-tuned model on the real test data and FT set. The distribution follows the one presented in Fig. 14.

It is noticeable that most of the volcanic deformations are grouped well together. In the real set, there are two volcanic clusters and about ten examples of
partial deformations further away from these clusters. In the FT set, there is a big volcanic cluster with smoother patterns than the real test set cluster and a
cluster and outliers with high similarity to real samples. (a) Real test set. (b) FT set.

Fine Tune
Real

Real Volcanic
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Fig. 14. Comparison of samples of real and FT sets visualized using t-SNE.
The FT data are different from RD, but there is a significant overlap of
distributions.

are widely present in the explored region but have not been
addressed in the synthetic data. To overcome this obstacle,
an FT step is performed.

C. Fine-Tuning Using Slope-Induced Signal

We identified and explored two approaches to solve the
problem of unaccounted patterns: to make the training dataset
more similar to the RD or, the other way around, to make the
RD more similar to the simulated data.

LSF makes RD less noisy and more similar to synthetic
data. The median filter using different kernel sizes is tested
and improved the results. The kernel size from 20 to 50 can
filter out the noise and keep the volcanic deformation signal

due to their spatial scale difference. Volcanic deformations in
our data ranged from about 15-50 km or 75-250 pixels and
should not be filtered out by smaller filter sizes.

However, improving the training set is more challeng-
ing because simulating the newly uncovered nonvolcanic
deformation patterns is difficult. Thus, patches with similar
deformation patterns of slope-induced signal and salt lakes
are extracted directly from RD over parts of the Andes
where no volcanoes exist. A combination of the 836 cropped
patches, half with and half without synthetic volcanic data,
is henceforth referred to as the FT set. It is used to fine-tune the
last layer of the model using a small learning rate to improve
the detection performance [72], [73].

Table II listed and compared various classification metrics
achieved by different approaches, where fine-tuning and test-
ing the model on the filtered RD set give the best performance.
As shown in Fig. 8, the ROC also suggests that the proposed
approach obtains a significantly higher detection rate over
others when the FPR is small (FPR < 0.2).

After fine-tuning, InceptionResNet v2 increases its lead in
performance compared to other architectures. The comparison
of ROC curves between different fine-tuned architectures, seen
in Fig. 9, shows that InceptionResNet v2 has 14% more
considerable AUC ROC value than other models.

D. Results Fusion

Since there may be multiple frames around one volcano,
and each frame was cut into several patches, a result-
fusion step is applied to the detection results to iden-
tify the deforming volcanoes. It fuses the intraframe and



BEKER et al.: DL FOR SUBTLE VOLCANIC DEFORMATION DETECTION WITH InSAR DATA 5218520
TABLE IIT
LIST OF THE VOLCANIC DEFORMATIONS (MM/YEAR) IN NINE FRAMES WITH DIFFERENT PSEUDOTEMPORAL BASELINES.
THE MODEL HAS SUCCESSFULLY DETECTED THE BOLDED VALUES. THE FINAL COLUMN GIVES THE MINIMAL
DETECTED DEFORMATIONS BY THE MODEL (TRAINED ON CUMULATIVE DEFORMATIONS OF R*5 YEARS),
AND UNDERLINED VALUES HIGHLIGHT THE MINIMAL DETECTION OVERALL
Frame Volcano ~b0y 45y 40y 35y 30y 25y 20y 15y 1y Min Defo
1 Cerro El Céndor 10.0 8.8 7.8 6.9 59 4.9 3.9 2.9 2.0 49
2 Cerro El Céndor 9.9 8.7 7.8 6.8 5.8 4.9 3.9 2.9 1.9 49
3 Cerro El Céndor 17.5 16.8 14.9 13.0 11.2 9.3 7.5 5.6 3.7 7.5
4 Cordon De Puntas Negras 9.6 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 5.0
5 Cordon De Puntas Negras 7.7 7.2 6.4 5.6 4.8 4.0 3.2 2.4 1.6 4.0
6 Lazufre 53 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 2.0
7 Lazufre 10.5 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 4.0
8 Lazufre 9.0 7.7 6.9 6.0 5.1 4.3 34 2.6 1.7 4.3
9 Robledo -11.4 -11.0 -9.8 -8.5 -7.3 -6.1 -4.9 -3.7 2.4 -1.3
Min Defo 5.0 4.5 4.0 3.5 3.0 2.5 2.0 / /

These deformation values presented are relative to the spatial and temporal reference point for each stack. They refer to the
deformations along the LOS; the nine stacks of InSAR data also have slightly different time frames.

interframe detection results around a volcano. The resulting
visualization allows checking the potential deforming volca-
noes in a single visualization, instead of many individual
patches.

Fig. 10 shows the geographical distributions of detection
results. Here, green, blue, red, and white rectangles indicate
TP, FP, FN, and TN detected areas within a frame, respectively.
In general, all the deforming volcanoes are identified by the
model. However, there exist significant numbers of FPs. The
FP distributions are independent of track directions (ascending
and descending) but follow ridges of mountains and significant
elevation changes.

1) Fusion Method: In the first step, an empty probability
matrix is created to collect the probabilities from each patch to
get the intraframe votes. The probability matrix, 8 x 8 pixels
in size, spatially represents the frame, each pixel covering
64 x 64 pixels in the patches/frames. As the stride is also
64 pixels, each patch matches and overlaps 4 x 4 probability
matrix pixels. Overlapping patch probabilities are weighted
with the Euclidean distance to the center of the overlapping
pixels in the probability matrix and summed up. Finally, the
sum of weighted probabilities is divided by the sum of weights
giving the final probabilities for each probability matrix pixel
within the frame.

A similar approach is to use interframes. Frames probability
matrices are forced into a common grid, and each pixel is given
a weight equal to the number of overlapping patches over
the pixel within that frame. In addition, overlapping pixels’
interframes are weight-averaged, providing a single probability
for each pixel in the whole area (see Fig. 11). Because of these
two levels of weighted averaging of overlapping patches and
frames, the visualization does not fully reflect the statistical
results in Table II.

This approach gives lower weights to the edges of frames,
prioritizing frames with centrally positioned and fully visible
volcanoes, where the classification decisions are made more
confidently. The voting system maintained the detection of all
visible deforming volcanoes (see Fig. 10).

2) Detected Deforming Volcanoes: The models identified
five volcanic deformations in the region, as shown in Fig. 12.
First, Cerro El Céndor (Antuco) has been reported to release

gas and steam on April 20, 2013 [74]. While Cerro El Condor
is estimated to be a young and faster growing volcano in the
region [75], up until now, to the best of our knowledge, the
growth has not been practically confirmed. This is the first
case of measurement confirmation of the Cerro El Condor
uplift. During our study from 2014 to 2020, it deforms at
9.9-17.5 mm/year in the LOS. Second, Lazufre was observed
to uplift ~20 mm/year from 1998 to 2011 [11] and about
30 mm/year from 2003 to 2010 [76], which slowed down to
5.2-10.4 mm/year during our observations. Third, deforma-
tion ~25 km east of Cordon de Puntas Negras was previously
reported as deformation near Cerro Overo [11]. It subsided at
a rate of 4 mm/year up to 2003-2005 and then began uplifting
5 mm/year to 2010. During our study, it is uplifting 7.7—
9.6 mm/year. Fourth, Robledo, also known as Cerro Blanco,
subsided in the survey from 1992 to 1996/7 26 mm/year, slow-
ing to 18 mm/year to 2000, 12 mm/year from 2003 to 2007,
and 8.7 mm/year from 2005 to 2010 [11], [77]. Based on
our research, from 2015 to 2020, it continued subsiding at a
rate of 11.4 mm/year. Fifth, Sabancaya [78], of which only
an edge of deformation is presented in our data, has erupted
from 2015 to 2022 (most of our study period), deforming
at a rate of 29.6 mm/year. In addition, while the Uturuncu
volcano is close to our study region and has been reported to
continue its deformation [11], [79], it is not contained in our
dataset.

VI. DISCUSSION
A. Evaluation of Learned Features

To better understand the model and the datasets and to
identify what the problematic regions found in the geographic
demonstration have in common, feature visualization is used.
It is performed by visually comparing the similarity of the
distributions of extracted latent features from the two sets.
We use the last convolutional layer output as the extracted
features, with a dimension of 1536. To visualize it in a
low-dimensional space and keep its original modality, a widely
used nonparametric nonlinear dimension reduction tool t-SNE
[35] is employed.

First, the FT and RD test set latent feature representations
are compared. From the second last layer of a fine-tuned
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model, we extract 1536 latent features of each patch. These
features represent the high-level visual features of the data.
The latent features are then coded to two dimensions using the
t-SNE technique [36], [37], as shown in Figs. 13 and 14. While
the FT set is similar to the RD set, they have slightly different
distributions. Most of the volcanic deformations in the FT set
are grouped, containing only a couple of RD set samples in

each cluster. To a lesser extent, the same goes for the RD test
set volcanic deformations, implying an observable difference
between the sets. It is also noticeable that, besides the patterns,
the intensity of the deformations plays a significant role in
grouping the data.

Feature analysis verifies and expands the data’s geographic
visualization findings. Fig. 13 shows that the FT set has fewer
slope-induced signals and a smoother background than the
RD set because of the elevation component [53] coming from
the residual tropospheric noise. The elevation component has
a higher intensity along the mountain ridges because of the
more significant elevation differences and the coarse resolution
of the atmospheric correction data. Since the background of
the FT set is collected surrounding the volcanic region but
never overlapping it, it typically does not cover the mountain
ridge and, therefore, the more prominent elevation component.
As a result, the elevation component seems to confuse the
model.

Theoretically, the elevation (stratified) noise component
should be sufficiently excluded by the applied atmospheric
corrections and PSI processing [60]. In contrast, the resid-
ual noise patterns in our data seem to correlate to terrain
elevation. In addition, it has been shown that residual tropo-
spheric noise cannot be removed entirely in some volcanic
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regions [53], [80], thus creating difficulties for simulations
and CNN training. Furthermore, the residual elevation noise
is exaggerated by increasing the temporal baseline to x5 years
and poses a problem when detecting subtle deformations
reflected in false-positive detections.

B. Sensitivity Analysis

Only four fully present deforming volcanoes exist in the
RD test set, and the lowest deformation rate is 5 mm/year.
Therefore, we cannot fully explore the model’s capabilities
using the RD set only. Thus, we use a sensitivity analysis
to expose the model to more data and find the minimal
detectable volcanic deformation. It is done by testing the
trained model with the rescaled and rewrapped cumulative
deformation maps using different pseudotemporal baselines
from one to five years, by increments of half a year. The orig-
inal RD test set has a temporal baseline of &5 years wrapped
cumulative deformation. The minimal detectable deformation
is observed only on confirmed volcanic deformations. The
scale of volcanic deformations is the maximum pixel value
in volcanic deformation extracted from InSAR observations
of each volcano.

Because of the fringes created by the wrapping process, the
data with changed temporal baseline do not only transform in
intensity but also in spatial features without affecting the SNR.
Reducing the intensity of slope-induced signal or volcanic
deformation signal can reposition or remove fringes, creating
different conditions for classification, as seen in Figs. 15
and 16. An increase in intensity (via temporal baseline)
leads to a rise in positive classifications and, hence, more
true-positive detections and vice versa. As tested with these
data, we find that the model can detect deformations down to
2 mm/year, as shown in Table III and Fig. 16.

The 2-mm/year limitation in volcanic deformations scale
detections appears because of the significance of deformation
intensity in decision-making, set by our synthetic training set
and identified in the t-SNE analysis. In addition, when tested
on the RD with the adjusted temporal baseline of four years,
the FT model increases AUC ROC to 93.2% (see Fig. 8).
This result confirms the t-SNE analysis findings that residual
background noise is lower in the FT set.

VII. CONCLUSION

The state-of-the-art in the field has been overviewed and
categorized according to the approaches taken. The main
challenges in detecting volcanic deformations in InSAR data
relate to the atmospheric noise and the lack of data for model
training. To respond to these challenges, we use the velocity
maps for increased detail and reduction in atmospheric noise
effect and synthetic data for model training. In addition,
the variogram modeling was used to statistically extract the
parameters used for simulations of residual atmospheric noise,
thus exactly covering the whole range of residual noise present
in the real test data.

A significant amount of the terrain deformation signal
has accumulated over the observation period. Slope-induced
signals and salt lakes are the region’s most frequent terrain
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deformation patterns. These signals create difficulties for sim-
ulations and DL model training. They are exaggerated by
increasing the temporal baseline to five years and play a
significant role when detecting subtle deformations. In addi-
tion, while, theoretically, the topological component should
be excluded by the applied atmospheric corrections and PSI
processing, a noise pattern is present in this work, correlating
to terrain elevation.

We proposed a DL model for detecting subtle long-term
volcanic deformation, which has not been previously explored.
Our model achieved AUC ROC values similar to that found in
other state-of-the-art short-term deformation detection models
[22], [24], [38] while detecting more than an order of mag-
nitude smaller deformations. All of the volcanic deformations
in the test set are detected, the smallest one being 5 mm/year.
These results are extended by the sensitivity analysis, which
shows that the minimal detectable deformation is in the range
of 2 mm/year. It is an improvement over previous work, having
the smallest detectable deformation of 35 mm/year [39].

The following phase is to utilize the trained model on a
larger scale. Adding a residual elevation component [53], [80]
to the synthetic set would make the model more resilient
and generalizable to wider regions and reduce the false-
positive rate. In addition, the data-centric analysis conducted
in this article can be utilized to uncover other region-specific
nonvolcanic deformation patterns. Further improvements in
the simulation of these nonvolcanic patterns should boost the
detection accuracy.
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