elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead

Ofori-Ampofo, Stella and Kuzu, Ridvan Salih and Zhu, Xiao Xiang (2023) High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3534-3537. IGARSS 2023, 2023-07-16 - 2023-07-21, California, USA. doi: 10.1109/IGARSS52108.2023.10282610.

[img] PDF
1MB

Official URL: https://ieeexplore.ieee.org/abstract/document/10282610

Abstract

The availability of open-access satellite data and advancements in machine learning techniques has exhibited significant potential in crop yield prediction. In the context of large farming systems and county-level predictions, it is customary to rely on coarse-resolution satellite images. However, these images often lack the sufficient textural detail to accurately summarise spatial information. This research aims to evaluate the advantages of enhanced spatial resolution by conducting a comparative analysis between coarse-resolution, high-temporal-frequency MODIS data and relatively high-resolution, low-temporal-frequency Landsat data for predicting corn yield in the USA. We benchmark this comparison against several models in a spatial versus non-spatial input data context. Our results suggest that, the use of high-spatial resolution for county-level yield prediction in large farming systems is not beneficial and the models explored are unable to generalize well to drought-struck years.

Item URL in elib:https://elib.dlr.de/198752/
Document Type:Conference or Workshop Item (Speech)
Title:High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Ofori-Ampofo, StellaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kuzu, Ridvan SalihUNSPECIFIEDhttps://orcid.org/0000-0002-1816-181X146120750
Zhu, Xiao XiangUNSPECIFIEDhttps://orcid.org/0000-0001-5530-3613UNSPECIFIED
Date:2023
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS52108.2023.10282610
Page Range:pp. 3534-3537
Status:Published
Keywords:Neural networks, Machine learning, Landsat, Predictive models, Data models, Satellite images, Spatial resolution
Event Title:IGARSS 2023
Event Location:California, USA
Event Type:international Conference
Event Start Date:16 July 2023
Event End Date:21 July 2023
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Kuzu, Dr. Ridvan Salih
Deposited On:07 Nov 2023 13:20
Last Modified:09 Jul 2024 14:29

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.