Ofori-Ampofo, Stella and Kuzu, Ridvan Salih and Zhu, Xiao Xiang (2023) High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3534-3537. IGARSS 2023, 2023-07-16 - 2023-07-21, California, USA. doi: 10.1109/IGARSS52108.2023.10282610.
PDF
1MB |
Official URL: https://ieeexplore.ieee.org/abstract/document/10282610
Abstract
The availability of open-access satellite data and advancements in machine learning techniques has exhibited significant potential in crop yield prediction. In the context of large farming systems and county-level predictions, it is customary to rely on coarse-resolution satellite images. However, these images often lack the sufficient textural detail to accurately summarise spatial information. This research aims to evaluate the advantages of enhanced spatial resolution by conducting a comparative analysis between coarse-resolution, high-temporal-frequency MODIS data and relatively high-resolution, low-temporal-frequency Landsat data for predicting corn yield in the USA. We benchmark this comparison against several models in a spatial versus non-spatial input data context. Our results suggest that, the use of high-spatial resolution for county-level yield prediction in large farming systems is not beneficial and the models explored are unable to generalize well to drought-struck years.
Item URL in elib: | https://elib.dlr.de/198752/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2023 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282610 | ||||||||||||||||
Page Range: | pp. 3534-3537 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Neural networks, Machine learning, Landsat, Predictive models, Data models, Satellite images, Spatial resolution | ||||||||||||||||
Event Title: | IGARSS 2023 | ||||||||||||||||
Event Location: | California, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 16 July 2023 | ||||||||||||||||
Event End Date: | 21 July 2023 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||
Deposited On: | 07 Nov 2023 13:20 | ||||||||||||||||
Last Modified: | 09 Jul 2024 14:29 |
Repository Staff Only: item control page