
HIGH SPATIAL RESOLUTION FOR CROP YIELD PREDICTION IN LARGE FARMING
SYSTEMS: A NECESSITY OR ADDITIONAL OVERHEAD

Stella Ofori-Ampofo1, Rıdvan Salih Kuzu2, Xiao Xiang Zhu1

1Technical University of Munich
2German Aerospace Center (DLR)

ABSTRACT

Concerning county-level yield predictions in large farming
systems, relying on coarse-resolution satellite images is cus-
tomary. However, these images lack sufficient textural detail
to accurately summarise spatial information. Our work eval-
uates the advantage of enhanced spatial resolution by con-
ducting a comparative analysis between coarse-resolution,
high-temporal-frequency MODIS data and relatively high-
resolution, low-temporal-frequency Landsat data for predict-
ing corn yield in the USA. We benchmark this comparison
using several models in a spatial versus non-spatial input data
case. According to our findings, incorporating high-spatial
resolution in this context did not yield any significant benefits,
as it comes at the cost of reduced temporal revisit. Root mean
square error of about 13 bushels per acre can be achieved 2-4
weeks before harvest for less-intense drought years. Extreme
drought-struck years are, however difficult to anticipate.

Index Terms— crop yield prediction, machine learning,
convolutional neural network, recurrent neural network.

1. INTRODUCTION

Achieving zero hunger remains challenging due to climate ex-
tremes, economic shocks, and conflicts [1]. Therefore, pre-
cise and timely prediction of crop yields is crucial for deci-
sions to control sudden food shortages. In this regard, open-
access satellite data offers a wealth of spatio-temporal infor-
mation that can be effectively utilized by integration of re-
mote sensing and artificial intelligence. This combination has
demonstrated great potential in various agricultural applica-
tions, such as crop condition assessment [2], vulnerability
evaluation, and yield estimation [3, 4, 5].

There are studies utilizing different combinations of vari-
ables, such as satellite surface reflectance, vegetation indices,
climate data [6, 7], as well as soil properties and farm man-
agement information [3], employing various machine learn-
ing (ML) and deep learning (DL) approaches. In large-scale
farming systems, such as those found in the United States,
coarse-resolution satellite images, often acquired from the
Moderate Resolution Imaging Spectroradiometer (MODIS),

are commonly utilized. To extract spatio-spectral and tempo-
ral features, volumetric convolutional neural networks (CNN)
are typically employed [4, 7]. Alternatively, two-dimensional
CNNs combined with recurrent neural networks (RNN) are
used to model the temporal component, which generally out-
performs individual CNN or RNN models [6, 8]. However,
coarse-resolution images may lack sufficient textural infor-
mation to capture representative spatio-spectral features. An
advantage of higher spatial resolution is its ability to capture
fine-grained variations, enabling the analysis of spatial pat-
terns that can provide insights into crop textural variations.
Their added benefit has been explored in similar tasks but for
smaller farming systems, with shorter periods using synthetic
data and without leveraging spatial insights [5, 9].

In this study, we present findings on county-level corn
yield prediction by comparing coarse spatial yet high tem-
poral resolution imagery (MODIS-MOD09A1.061) to higher
spatial yet lower temporal resolution imagery (Landsat-8).
The spatial resolution of MODIS and Landsat-8 is 500 and
30 meters with a temporal frequency of 16 and 8-day respec-
tively. These surface reflectance products are complemented
with weather variables and our baseline approach involves
encoding without spatial information (pixel averages), and
spatial order (time series as histograms) [4].

2. DATA

Corn production dominates in the mid-western US; hence, we
limit our analysis to the top five production states: Iowa, Illi-
nois, Indiana, Nebraska, and Minnesota. On average, farm
sizes in these selected states are over 250 acres [10], which
encourages using of coarse-resolution data for yield applica-
tions. Google Earth Engine [11] is used to collect surface re-
flectances and Daymet climate variables (precipitation, mini-
mum, and maximum temperature) for the usual planting and
harvesting period (April to September).

MODIS contains seven spectral reflectance bands within
the visible, near infra-red and short-wave-infra-red regions.
For Landsat, we retain six out of eleven bands to align with
the spectral range of MODIS. The daily granularity of the
Daymet variables are reduced to coincide with the 8-day and
16-day observation window of MODIS and Landsat. We fur-



Fig. 1. Feature maps derived from convolution operations on
Landsat and MODIS

ther compute normalized difference water (NDWI) and veg-
etation indices (NDVI) to introduce expert-knowledge fea-
tures and mask non-corn pixels using crop data layer from
the United States Department of Agriculture (USDA).

Two main data input formats are investigated: (i) a satel-
lite time series X ∈ RT×C created by averaging pixels
within each county, (ii) a patch-level input of shape X ∈
RT×C×H×W . For patch inputs, we subsequently transform
satellite image time series into compact three-dimensional
histograms of binarized pixel counts X ∈ Rb×T×C [4] where
b is the number of bins and T , C, H , and W are the time
series length, number of channels, image height and width
respectively. The target variable, county-level average yield
(in bushel per acre) is obtained from USDA, National Agri-
cultural Statistics Service from period 2010 to 2021.

3. EXPERIMENTAL SETTING

We design a joint CNN-LSTM architecture (Figure 2) to si-
multaneously learn spatio-spectral and temporal patterns for
patch inputs. The architecture consist of three blocks of time-
distributed convolution layers, each followed by a batch nor-
malization, rectified linear unit (ReLU) activation and max-
pooling. The extracted spatio-spectral features are passed
to an LSTM to learn temporal dependency. To avoid feed-
ing the whole patch of a county (computationally challenging
for Landsat data), five sub-patches are randomly sampled per
county as inputs.

In the absence of spatial information, Random Forest (RF)
is applied. Likewise, the CNN blocks shown in Figure 2 are
removed to focus solely on modeling temporal sequences us-
ing LSTM. In the case of histogram inputs, two-dimensional
convolutions are employed, following a similar approach as
described in [4].

Fig. 2. Spatio-spectral and temporal feature extraction using
a CNN-LSTM

Our experiments consist of two scenarios. Scenario-1
considers only MODIS data from 2010 to 2021 across five
states, increasing the overall training sample size. Scenario-1
includes observations from diverse agro-climatic zones and
enables the comparison of different input data formats for test
year 2020 and drought year 2012. [12]. Due to the absence
of Landsat-8 data for 2012, Scenario-2 strictly compares
MODIS and Landsat data for Iowa state only. It considers
observations from 2013 to 2021, with 2020 serving as an
independent test set. The validation set comprises 25% of the
training samples in all setups.

4. RESULTS AND DISCUSSION

4.1. Feature importance across time using Scenario-1

Using permutation-based importance on RF model (Figure 3),
we observe for both cases of drought and non-drought the sig-
nificance of NDWI during senescence. RMSE is reduced by
an average of 4-5 bu/acre without the NDWI feature. The ef-
fect of the blue band, indicative of water presence, is seen to
have a double impact during drought years. However, con-
structing a RF model using only the top significant features,
NDWI and blue features, increases the RMSE to 44 and 25
bu/acre for 2012 and 2020.

Fig. 3. Scenario-1: Temporal feature relevance using per-
mutation importance on test sets. Drought-struck year 2012
(left), non-drought year 2020 (right). Legend is limited to the
most significant features

4.2. Comparing performance for drought-struck and
non-drought years

Drought year (2012) was more challenging to predict as it
exhibits above-normal weather conditions during crop devel-
opment, and presents an unprecedented sample in our time
series. From Table 1, all models are competitive without ex-
treme drought impacts but the LSTM explained over 50% of
the variance for both test years. With extensive training sam-
ples (introducing geographical variability), we observe a gen-
eral improvement in performance for the year 2020 compared
to the same year in Scenario-2, where only Iowa state is con-
sidered. The latter generalises poorly to an unseen year. The
relatively poor performance of CNN-LSTM in Scenario-1 can



Table 1. Performance metrics use only MODIS data (Scenario-1) over the top-five corn-growing states. Training data consists
of satellite time series from 2010 to 2021 except for 2012 and 2020, which are independent test sets

.

Model Validation Test (2012) Test (2020)
MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE R2

RF (M) 4.63±0.04 10.07±0.06 0.86±0.01 45.86±1.1 39.90±0.91 0.03±0.05 5.97±0.15 13.49±0.27 0.62±0.02

Histogram-CNN (M) 4.50±0.0 9.72±0.23 0.88±0.01 34.40±0.01 31.85±0.68 0.40±0.03 6.12±0.0 13.66±0.25 0.62±0.01

LSTM (M) 4.48±0.0 9.86±0.26 0.87±0.01 30.70±0.01 27.75±0.79 0.53±0.03 5.71±0.0 12.78±0.80 0.66±0.04

CNN-LSTM (M) 5.78±0.01 12.84±2.08 0.79±0.06 55.08±0.01 50.31±0.87 -0.49±0.05 7.32±0.0 16.30±0.08 0.46±0.01

Table 2. Comparison of Landsat (L) and MODIS (M) in Iowa state (Scenario-2). Training data consists of satellite time series
from 2013 to 2021 except for 2020 which is independently used as a test set

Model Validation Test (2020)
MAPE RMSE R2 MAPE RMSE R2

RF (L) 4.07±0.17 10.06±0.38 0.76±0.02 10.34±0.30 21.61±0.47 -0.82±0.08

RF (M) 3.45±0.23 8.04±0.52 0.86±0.02 11.98±0.87 24.24±1.30 -1.18±0.23

Histogram-CNN (L) 4.46±0.0 10.68±0.05 0.73±0.01 8.43±0.01 18.04±0.85 -0.30±0.12

Histogram-CNN (M) 4.19±0.0 9.95±0.81 0.78±0.02 7.73±0.01 16.66±1.90 -0.03±0.23

LSTM (L) 4.25±0.0 10.02±0.2 0.79±0.01 10.69±0.01 22.27±1.42 -0.94±0.24

LSTM (M) 3.30±0.00 7.71±0.53 0.87±0.01 6.98±0.01 15.36±1.75 0.12±0.21

CNN-LSTM (L) 9.50±0.0 21.14±0.86 0.01±0.02 10.4±0.01 21.53±2.59 -0.71±0.41

CNN-LSTM (M) 8.01±0.0 17.96±0.7 0.38±0.01 7.10±0.0 16.15±0.19 0.04±0.02

be attributed to excluding a corn mask, leading to mixed lan-
duse/cover in the patches and noisy signals. Applying a corn
mask directly on the input creates spatial gaps due to non-
contiguous corn farms.

4.3. Benefiting from improved spatial resolution

Using Landsat presents technical overhead, mainly in storage
and computational requirements. For instance, a single-date
Landsat observation for a county is 47 megabytes, approxi-
mately 280 times larger than MODIS. By comparing Landsat
and MODIS (Scenario-2) under this setup, the highest perfor-
mance is often seen with MODIS inputs except for the RF
baseline. Similar to [9] there was no consistent value in using
an improved resolution data for county-level corn yield pre-
diction in large farming systems. Although Landsat offers a
better level of spatial detail, it comes at the expense of reduced
temporal resolution. Here, critical phenological states which
may hold information necessary to estimate yield amount may
be missed. Conversely, at farm-level, [13] deduced that using
Landsat improved wheat prediction suggesting the appropri-
ateness of higher spatial resolution for small spatial units.

4.4. In-season prediction

Tables 3 and 4 present the RMSE and R2 metrics at the end of
selected months using LSTM for Scenario-1. The year 2012
can be predicted well in advance (end of July), but four units
can improve the performance for 2020 at the end of August.

This improvement is achieved approximately 2-4 weeks be-
fore harvest, depending on the state.

Table 3. Comparing in-season RMSE using LSTM
June July August September

2012 62.61 27.80 28.79 27.75
2020 18.18 17.58 13.34 12.78

Table 4. Comparing in-season R2 using LSTM
June July August September

2012 -1.40 0.53 0.49 0.53
2020 0.31 0.36 0.63 0.66

5. CONCLUSION

This study examined the benefits of improved spatial reso-
lution for corn yield prediction by comparing MODIS and
Landsat surface reflectance, complemented with weather
variables. Our results suggest that spatially high, temporally
low-resolution data offers no advantages for county-level
yield assessments, while low-spatial, high temporal resolu-
tion data yields beneficial outcomes.

Regarding spatial-temporal feature extraction, the poor
performance of the CNN-LSTM can be attributed to mixed or
noisy land use in sampled patches, requiring an explanation
layer to gain insights into the model’s attention. In the case of
Landsat, persistent cloud conditions can render an entire se-
quence of patches unusable. Such influence is minimal with



Fig. 4. Scenario-1: Observed and predicted corn yield for 2012 (first row) and 2020 (second row). The map shows the
experiment with the closest performance to the mean. Spatial variability in crop yield is reasonable for all models but LSTM
mimics the drought year well.

MODIS data due selecting a best out of 8-daily observations.
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