Ofori-Ampofo, Stella und Kuzu, Ridvan Salih und Zhu, Xiao Xiang (2023) High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 3534-3537. IGARSS 2023, 2023-07-16 - 2023-07-21, California, USA. doi: 10.1109/IGARSS52108.2023.10282610.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10282610
Kurzfassung
The availability of open-access satellite data and advancements in machine learning techniques has exhibited significant potential in crop yield prediction. In the context of large farming systems and county-level predictions, it is customary to rely on coarse-resolution satellite images. However, these images often lack the sufficient textural detail to accurately summarise spatial information. This research aims to evaluate the advantages of enhanced spatial resolution by conducting a comparative analysis between coarse-resolution, high-temporal-frequency MODIS data and relatively high-resolution, low-temporal-frequency Landsat data for predicting corn yield in the USA. We benchmark this comparison against several models in a spatial versus non-spatial input data context. Our results suggest that, the use of high-spatial resolution for county-level yield prediction in large farming systems is not beneficial and the models explored are unable to generalize well to drought-struck years.
elib-URL des Eintrags: | https://elib.dlr.de/198752/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | High Spatial Resolution for Crop Yield Prediction in Large Farming Systems: A Necessity or Additional Overhead | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2023 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS52108.2023.10282610 | ||||||||||||||||
Seitenbereich: | Seiten 3534-3537 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Neural networks, Machine learning, Landsat, Predictive models, Data models, Satellite images, Spatial resolution | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2023 | ||||||||||||||||
Veranstaltungsort: | California, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 16 Juli 2023 | ||||||||||||||||
Veranstaltungsende: | 21 Juli 2023 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Kuzu, Dr. Ridvan Salih | ||||||||||||||||
Hinterlegt am: | 07 Nov 2023 13:20 | ||||||||||||||||
Letzte Änderung: | 09 Jul 2024 14:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags