elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

DDM-Former: Global Ocean Wind Speed Retrieval with Transformer Networks

Zhao, Daixin and Heidler, Konrad and Asgarimehr, Milad and Arnold, Caroline and Xiao, Tianqi and Wickert, Jens and Zhu, Xiao Xiang and Mou, Lichao (2023) DDM-Former: Global Ocean Wind Speed Retrieval with Transformer Networks. In: 2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023, pp. 1182-1185. IGARSS 2023, 2023-07-15 - 2023-07-22, Pasadena, USA. doi: 10.1109/IGARSS52108.2023.10281607. ISBN 979-835032010-7. ISSN 2153-6996.

[img] PDF
2MB

Official URL: https://dx.doi.org/10.1109/IGARSS52108.2023.10281607

Abstract

As a novel remote sensing technique, GNSS reflectometry (GNSS-R) opens a new era of retrieving Earth surface parameters. Several studies employ the combination of deep learning and GNSS-R observable delay-Doppler maps (DDMs) to generate ocean wind speed estimation. Unlike these methods that often use convolutional neural networks (CNNs) with inductive bias, we proposed a Transformer-based model, named DDM-Former, to exploit fine-grained delay-Doppler correlation independently. Our model is evaluated on the Cyclone GNSS (CYGNSS) version 3.0 dataset and shown to outperform the other retrieval methods.

Item URL in elib:https://elib.dlr.de/198647/
Document Type:Conference or Workshop Item (Speech)
Title:DDM-Former: Global Ocean Wind Speed Retrieval with Transformer Networks
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Zhao, DaixinUNSPECIFIEDhttps://orcid.org/0000-0003-2766-1338UNSPECIFIED
Heidler, KonradUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Asgarimehr, MiladGeoForschungszentrum PotsdamUNSPECIFIEDUNSPECIFIED
Arnold, CarolineDeutsches Klimarechenzentrum, Hamburg, GermanyUNSPECIFIEDUNSPECIFIED
Xiao, TianqiHelmholtz Centre Potsdam, GFZ German Re search Centre for Geosciences, Potsdam, GermanyUNSPECIFIEDUNSPECIFIED
Wickert, JensGeoForschungsZentrum PotsdamUNSPECIFIEDUNSPECIFIED
Zhu, Xiao XiangUNSPECIFIEDhttps://orcid.org/0000-0001-5530-3613UNSPECIFIED
Mou, LichaoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:July 2023
Journal or Publication Title:2023 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2023
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS52108.2023.10281607
Page Range:pp. 1182-1185
ISSN:2153-6996
ISBN:979-835032010-7
Status:Published
Keywords:Cyclone GNSS, deep learning, GNSS reflectometry, ocean wind speed, Transformer network
Event Title:IGARSS 2023
Event Location:Pasadena, USA
Event Type:international Conference
Event Start Date:15 July 2023
Event End Date:22 July 2023
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - SAR methods, R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Zhao, Daixin
Deposited On:06 Nov 2023 12:55
Last Modified:24 Apr 2024 20:59

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.