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ABSTRACT

As a novel remote sensing technique, GNSS reflectometry
(GNSS-R) opens a new era of retrieving Earth surface param-
eters. Several studies employ the combination of deep learn-
ing and GNSS-R observable delay-Doppler maps (DDMs) to
generate ocean wind speed estimation. Unlike these methods
that often use convolutional neural networks (CNNs) with in-
ductive bias, we proposed a Transformer-based model, named
DDM-Former, to exploit fine-grained delay-Doppler correla-
tion independently. Our model is evaluated on the Cyclone
GNSS (CYGNSS) version 3.0 dataset and shown to outper-
form the other retrieval methods.

Index Terms— Cyclone GNSS, deep learning, GNSS re-
flectometry, ocean wind speed, Transformer network

1. INTRODUCTION

By exploiting scattered signals of opportunity from GNSS,
spaceborne GNSS reflectometry (GNSS-R) has emerged as
a novel remote sensing technique to retrieve various Earth
surface parameters, e.g., ocean wind speed [2] and soil mois-
ture [3]. With cost-efficient nanosatellites, abundant mea-
surements are made available with significant improvements
in both spatial and temporal resolutions. Cyclone GNSS
(CYGNSS), launched in December 2016 as the first small
satellite constellation fully dedicated to GNSS-R, can pro-
vide a spatial resolution of approximately 0.5 km to 25 km
for smooth to rough surfaces with a mean revisit time of 7 h
[4].

One of the fundamental observables of GNSS-R is the
delay-Doppler map (DDM), which refers to a two-dimensional
map of scattering power at a range of signal delays and
Doppler frequency shifts. As ocean surface roughness is al-
tering due to ocean winds, the distribution of ocean slopes is
described by power changes in delay and Doppler dimensions

An extended version of this conference report is available at [1].

Fig. 1. CYGNSS Level-1 bistatic radar cross section (BRCS)
DDMs at low (left) and high (right) wind speeds.

[5]. DDMs that carry fine-grained delay-Doppler correlation
can thus be used to estimate ocean wind speeds. Examples of
CYGNSS Level-1 DDMs are shown in Fig. 1.

Many previous works have proved the feasibility of es-
timating ocean wind speeds using DDMs [6, 7]. As deep
learning is taking off in remote sensing [8] and an increasing
amount of GNSS-R data is collected in recent years, several
studies show that data-driven approaches could offer an al-
ternative way to address potential limitations of conventional
retrieval methods and enhance ocean wind speed estima-
tions. Early works utilize multilayer perceptron (MLP) to
incorporate GNSS-R parametric data and improve estimation
performance [9, 10]. More recently, convolutional neural
networks (CNNs) have demonstrated their strong capability
to aggregate critical information from DDMs and facilitate
ocean wind speed retrieval [11, 12].

Considering the fact that DDMs are diametrically dis-
tinctive from natural images, the inbuilt inductive bias of
CNNs can be misleading in perceiving these observables. We
thus turn to a more recent network with a weaker inductive
bias named Transformer [13]. Transformers are widely em-
ployed in many natural language processing and computer
vision tasks, and have achieved state-of-the-art performance
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Fig. 2. Schematic of the proposed DDM-Former. L Transformer encoder layers exploit an embedded DDM with delay-Doppler
coordinates to retrieve the ocean wind speed at a given location.

on multiple computer vision benchmarks. Differing from
CNNs, Transformer-based models are able to capture long-
range dependencies by their attention mechanism [14] rather
than with local kernels. Additionally, instead of including
translation equivariance that is beneficial for processing nat-
ural images, Transformers can learn to exploit and perceive
DDMs independently.

With the hypothesis that networks with a global recep-
tive field and a weaker inductive bias can better learn the
delay-Doppler correlation in DDMs, in this study, we devise
a Transformer-based model, termed DDM-Former, for ocean
wind speed retrieval. Our model achieves promising results
compared to the other retrieval methods.

2. METHOD

For CNN-based models, features extracted from homoge-
neous objects in a natural image are considered the same or
similar, regardless of their spatial locations. However, the
abscissa and ordinate of pixels in DDMs contain the corre-
sponding Doppler frequency shifts and signal delays rather
than locality information. The central idea of our method
is to aggregate fine-grained delay-Doppler correlation glob-
ally and explore the underlying mapping from DDMs to the
corresponding wind speeds with a weaker inductive bias.

The overall architecture of the proposed DDM-Former is
depicted in Figure 2. It is trained with four channels of DDMs
(namely, DDM bistatic radar cross section (BRCS), the cor-
responding effective scattering area, analog power, and raw
counts) to estimate a wind speed over the glistening zone.
Supposing that we have an input DDM xD ∈ RH×W×C ,

where H , W , C are height, width, and the number of chan-
nels, respectively. Instead of separating the input into non-
overlapping small patches, we deliberately perform a pixel-
wise tokenization over the DDM. Subsequently, in order to
enhance the aggregation of global features, an extra learnable
vector is added so that the pixel sequence xp becomes a ma-
trix of size (M+1)×C, where M = H×W . In addition, we
incorporate DDM coordinates that hold rich cross-correlation
for scattering signals, i.e., pixels of the same abscissa are
essentially on an equi-Doppler line. This strategy helps the
model to take into account the distinct delay and Doppler in
DDMs.

Furthermore, the tokenized DDM that carries scattering
power and its delay-Doppler correlation is fed into a linear
transformation to produce a feature embedding. This embed-
ding then served as the input of several Transformer encoder
layers. For each Transformer encoder layer, it contains sev-
eral vital components: multi-head self-attention (MSA) sub-
layers [14], MLP sublayers, and layer normalization (LN).
As we calculate self-attentions of the embedded pixels in-
dependently over all attention heads, the model exploits
delay-Doppler correlation within MSA sublayers through a
reweighting process. This mechanism allows the model to
focus on both global delay-Doppler correlation and contex-
tual information adaptively. To perform normalization across
feature dimension and smooth gradients during the training,
LN is added before each MSA and MLP sublayers [15]. L
Transformer encoder layers take embeddings as input and
generate feature vector xl as follows:

x′
l = MSA(LN(xl−1)) + xl−1 , (1)

xl = MLP(LN(x′
l)) + x′

l , (2)
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Table 1. RMSE values of the proposed DDM-Former compared to the other retrieval methods for different wind speed intervals.

Method All samples 2.5m/s <v ≤ 4m/s 4m/s <v ≤ 8m/s 8m/s <v ≤ 12m/s 12m/s <v ≤ 16m/s 16m/s <v ≤ 20m/s v>20m/s
RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s) RMSE (m/s)

MVE [2] 1.92 1.23 1.39 2.54 4.75 7.24 10.22
CyGNSSnet [12] 1.55 1.63 1.35 1.69 3.07 4.67 7.87
DDM-Former 1.43 1.49 1.18 1.63 3.15 4.65 7.77

in which l = 1, 2, · · · , L. Finally, the output representa-
tion from Transformer encoder layers is normalized by an LN
layer, flattened, and passed through an MLP head to generate
an ocean wind speed estimation.

Compared with previous CNN-based algorithms, the
advantage of our method is to encourage the model to adap-
tively pay attention to its “regions of interest” in DDMs,
which strengthens the network’s ability to distinguish critical
information from the inputs independently.

3. EXPERIMENTAL SETUP

We evaluate the proposed DDM-Former with the CYGNSS
version 3.0 dataset [16] to verify retrieval performance. Our
training data contain 318 days of measurements, with vali-
dation data from May 2020 to August 2020, followed by nine
months of test data. Temporally clustered training, validation,
and test sets allow us to evaluate model generality and ro-
bustness with unseen samples. In addition, ground truth wind
speeds are labeled with nearest neighbor wind speed estimates
from ERA5 data. To validate our method’s effectiveness, the
proposed model is compared with the conventional retrieval
algorithm minimum variance estimator (MVE) [2], and base-
line model CyGNSSnet [12] over 266 days of the test period.

Before model training, we carry out quality control proce-
dures to eliminate low-quality data as in [12], e.g., we remove
any observation with a receiver antenna gain in the direction
of the specular point and a direct signal-to-noise ratio that
are less than 0 dB. After quality control, 8.0 × 106 training
samples, 3.3 × 106 validation samples, and 4.5 × 106 test
samples are retained. In addition, to bring four channels of
input DDMs into the same scale and stabilize the training,
processed datasets are normalized with zero mean and unit
variance. We apply Gaussian error linear unit (GELU) as the
activation function, and use mean squared error (MSE) as the
loss function.

4. RESULTS & DISCUSSION

Table 1 quantifies the performance of the evaluated models
over the nine months test period for different wind speed
intervals. Generally speaking, these results demonstrate a
reasonably competitive performance of deep learning-based
methods in wind speed estimation. Although only DDMs
are used for model inputs without other auxiliary parameters,

Table 2. RMSE, bias, MAPE, and R2 score for different
methods.

Method RMSE (m/s) Bias (m/s) MAPE (%) R2 score
MVE [2] 1.92 −0.98 20.8 0.29
CyGNSSnet [12] 1.55 0.14 18.4 0.55
DDM-Former 1.43 −0.02 16.9 0.61

such models still show smaller RMSE values than the con-
ventional method. It proves that data-driven approaches are
able to learn an underlying mapping from DDMs correspond-
ing to wind speeds by giving sufficient training samples with
appropriate network design.

By exploiting the delay-Doppler correlation indepen-
dently, the proposed DDM-Former achieves the best over-
all performance with a root mean square error (RMSE)
of 1.43m/s, outperforming the respectable baseline model
CyGNSSnet by 7.7% and the conventional retrieval algorithm
MVE by 25.5%. In addition, our model reveals a significant
improvement in the lowest RMSE of 1.18m/s at the wind
speed interval of 4–8m/s. A similar performance could also
be observed with wind speed intervals of 8–12m/s and larger
than 20m/s.

The statistical results with multiple evaluation metrics of
the models are shown in Table 2. The metrics all concur on the
consistent improvement of DDM-Former’s performance; in
particular, an average prediction bias that is close to zero. Es-
sentially, our model achieves a lower estimation residuals, and
better mean absolute percentage error (MAPE) and R2 scores
compared to the other competitors. These results confirm our
assumption that a Transformer-based model equipped with
MSA can efficiently learn the complex delay-Doppler correla-
tion from DDMs, thus leading to increased accuracy in ocean
wind speed estimation.

5. CONCLUSION

With low-cost GNSS-R constellation data, we show that
the proposed DDM-Former can be well applied to the task
of wind speed retrieval. Compared to the conventional re-
trieval method and CNN-based algorithms, our method can
adaptively explore and exploit delay-Doppler correlation in
DDMs by utilizing Transformer-based models with the atten-
tion mechanism.

Moreover, there are still opportunities for further en-
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hancements in creating more generalized models to improve
estimation performance, especially in strong wind regimes.
GNSS-R integrated with deep learning could be further devel-
oped to produce enhanced retrieval products with increasing
constellations and data.
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