Niemeijer, Joshua und Schwonberg, Manuel und Termöhlen, Jan-Aike und Schäfer, Jörg P. und Schmidt, Nico M. und Gottschalk, Hanno und Fingscheidt, Tim (2023) Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving. IEEE Access. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/ACCESS.2023.3277785. ISSN 2169-3536.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Kurzfassung
Deep neural networks (DNNs) have proven their capabilities in the past years and play a significant role in environment perception for the challenging application of automated driving. They are employed for tasks such as detection, semantic segmentation, and sensor fusion. Despite tremendous research efforts, several issues still need to be addressed that limit the applicability of DNNs in automated driving. The bad generalization of DNNs to unseen domains is a major problem on the way to a safe, large-scale application, because manual annotation of new domains is costly, particularly for semantic segmentation. For this reason, methods are required to adapt DNNs to new domains without labeling effort. This task is termed unsupervised domain adaptation (UDA). While several different domain shifts challenge DNNs, the shift between synthetic and real data is of particular importance for automated driving, as it allows the use of simulation environments for DNN training. We present an overview of the current state of the art in this research field. We categorize and explain the different approaches for UDA. The number of considered publications is larger than any other survey on this topic. We also go far beyond the description of the UDA state-of-the-art, as we present a quantitative comparison of approaches and point out the latest trends in this field. We conduct a critical analysis of the state-of-the-art and highlight promising future research directions. With this survey, we aim to facilitate UDA research further and encourage scientists to exploit novel research directions.
elib-URL des Eintrags: | https://elib.dlr.de/198544/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Survey on Unsupervised Domain Adaptation for Semantic Segmentation for Visual Perception in Automated Driving | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 7 Juli 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Access | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/ACCESS.2023.3277785 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 2169-3536 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Computer Vision, Deep Neural Networks, Unsupervised Domain Adaptation, Semantic Segmentation, Automated Driving | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof , Braunschweig | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik Institut für Verkehrssystemtechnik > Kooperative Systeme, BS Institut für Verkehrssystemtechnik > Kooperative Systeme, BA | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Niemeijer, Joshua | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 05 Dez 2023 14:27 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 02 Sep 2024 09:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags