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ABSTRACT Deep neural networks (DNNs) have proven their capabilities in the past years and play a
significant role in environment perception for the challenging application of automated driving. They are
employed for tasks such as detection, semantic segmentation, and sensor fusion. Despite tremendous research
efforts, several issues still need to be addressed that limit the applicability of DNNs in automated driving.
The bad generalization of DNNs to unseen domains is a major problem on the way to a safe, large-scale
application, because manual annotation of new domains is costly, particularly for semantic segmentation.
For this reason, methods are required to adapt DNNs to new domains without labeling effort. This task
is termed unsupervised domain adaptation (UDA). While several different domain shifts challenge DNNs,
the shift between synthetic and real data is of particular importance for automated driving, as it allows the
use of simulation environments for DNN training. We present an overview of the current state of the art in
this research field. We categorize and explain the different approaches for UDA. The number of considered
publications is larger than any other survey on this topic. We also go far beyond the description of the UDA
state-of-the-art, as we present a quantitative comparison of approaches and point out the latest trends in this
field. We conduct a critical analysis of the state-of-the-art and highlight promising future research directions.
With this survey, we aim to facilitate UDA research further and encourage scientists to exploit novel research
directions.

INDEX TERMS Computer vision, deep neural networks, unsupervised domain adaptation, semantic
segmentation, automated driving.

I. INTRODUCTION
Perception of the environment using a variety of sensors is
an essential component of modern autonomous systems, e.g.,
automated vehicles [1], [2]. Visual perception using camera
sensors is of particular interest, as this type of sensor is
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inexpensive and provides diverse information not only on the
geometry of the environment but also on the surfaces, e.g.,
colors, textures, and text on traffic signs. The perception that
converts sensory to semantic information utilizes machine
learning methods such as deep neural networks (DNNs) that
are trained on a large amount of human-labeled training data.
This principle led to remarkable results [3] and a newly
emerging field of machine learning research. Nowadays,
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FIGURE 1. Unsupervised domain adaptation scheme illustrating the
difference between source-only training and unsupervised domain
adaptation (UDA). Red indicates (the use of) labeled data from the source
domain and green indicates that unlabeled data from the target domain
is utilized.

DNNs are employed for a large variety of tasks and areas,
but we will focus on DNNs for semantic segmentation in this
survey.

Despite the capabilities of DNNs to learn complex rela-
tions, there are still several challenges to solve. First, adver-
sarial attacks [4] that are designed to cause wrong predic-
tions are a severe threat to DNNs in safety-critical areas
such as automated driving. Second, the large amounts of
human-labeled data that are required for training are costly,
and the training of large models on thousands or millions
of images also. It is worth mentioning that self-supervised
learning substantially reduced the need for labels [5]. One
of the most severe issues is the need to generalize DNNs
to samples outside their training distribution. Domain shifts,
i.e., when training and inference distribution differ, occur
often and can have multiple causes, such as changes in
illumination, location, weather conditions, or sensor noise.
Significant performance degradation of the model is usually
the consequence. A domain shift also occurs when training on
synthetic data and employing themodel on real data. Utilizing
synthetic data for training is of particular interest, because
it offers labels without human annotation effort and allows
critical situations to be simulated that would be too dangerous
or too rare in real data recordings, e.g., accidents and children
running onto the street. For semantic segmentation, manual
labeling effort by a human annotator is very high and can
take up to 90 minutes per image [6]. However, since synthetic
data can substantially differ from real data, significant perfor-
mance drops are caused when a model trained on synthetic
data receives real data.

To counteract the problems introduced by domain shifts,
unsupervised domain adaptation (UDA) methods have
emerged that require only unlabeled samples of the target
domain to adapt the network to it. Figure 1 illustrates the basic
principle. Instead of training only on labeled images from
the source domain DS , for UDA there are also images from

the target domain DT available for adaptation, but without
any labels. In both cases, the inference is supposed to be
performed on data from DT .

One of the most important and challenging applications
is automated driving, where the autonomous system has to
handle a broad range of driving scenarios. Domain shifts that
cause a perception performance drop can seriously threaten
human lives. For this reason, UDA methods are essential
for automated driving. Consequently, this survey focuses on
UDA methods for environment perception in autonomous
driving, particularly on semantic segmentation of camera
images. Semantic segmentation not only provides important
information about objects but also about the environment
surrounding the vehicle (the background classes), which can
serve as the basis of a local grid map [7] or for map verifica-
tion [8], [9], [10]. This makes segmentation a crucial part of
the perception system. It is also one of the most commonly
used applications in scientific publications on unsupervised
domain adaptation methods for visual perceptions. UDA for
object detection is also an active research area [11] but is out
of the scope of this survey.

The UDA works included in this survey focus on the
synthetic-to-real domain shift. As described, this shift is of
special importance for automated driving, and the prioritiza-
tion is valuable to assess how useful synthetic data can be
for real applications. Because the synthetic-to-real domain
shift benchmarking dominates UDA research, it is a reason-
able choice for the focus of the survey to provide an exten-
sive, valuable large-scale comparison of different approaches.
However, since many more domain shifts are relevant for
automated driving, we critically discuss this question in Sec-
tion VI-B.

The evolvement of UDA publications for semantic seg-
mentation for synthetic-to-real adaptation supports the impor-
tance of UDA for automated driving in research. This work
focuses on UDA methods proposed for semantic segmenta-
tion since 2017. The research area of domain adaptation for
machine learning already emerged early before the devel-
opment of deep learning. However, only in 2017, the very
first work [12] for UDA for semantic segmentation utilizing
modern DNNs was proposed. For this reason, this year is
taken as the initial year of research for UDA for semantic
segmentation.

Several survey papers have attempted to provide a struc-
tured overview of this research field in recent years. Here we
have to distinguish between surveys on domain adaptation
in general [13], [14], [15] and surveys specifically for unsu-
pervised domain adaptation for semantic segmentation [16],
[17]. The general domain adaptation surveys do not focus
on domain adaptation for semantic segmentation and there-
fore provide not the same depth and quantity as our survey.
Toldo et al. [16] and Csurka et al. [17] published specialized
surveys about domain adaptation for semantic segmentation
and are closest to our survey. Both cover a significantly
smaller amount of papers (factor of three). Toldo et al. [16]
include a performance comparison clustered according to the
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backbones, but with its publication in 2020, it is too old
to cover recent trends. The clustering of UDA approaches
is similar for both Toldo et al. [16] and Csurka et al. [17].
Our clustering also has commonalities with theirs. However,
we extend the known taxonomy by the area of hybrid domain
adaptation and provide more fine-grained sub-groupings for
each area.

In summary, with this survey, our key contributions are:

• We propose a simple taxonomy that helps to group
the different works. We also cover vision transformer
networks for UDA as the very first survey.

• We provide the most complete literature study and com-
parison up to date by surveying three times more papers
than previous studies.

• We provide a quantitative comparison of the different
methods, showing methodical and performance trends
of the last years.

• We take a critical look at the current approaches to over-
come domain shifts and highlight common problems
in the training process and evaluation of the adaptation
approaches.

• We point out promising future research questions in this
research area.

In addition, we have created an interactive project website
that allows a more detailed comparison of all methods than
in written form alone. The raw data of our quantitative
comparison is also provided for further utilization by other
researchers. The website can be accessed at: https://uda-
survey.github.io/survey/.1

Our survey is expected to be valuable for three groups
of readers: beginners, experts, and lecturers. This survey
provides a structured introduction for readers without any
prior knowledge of the topic (unsupervised) domain adap-
tation. We also discuss the most important benchmarking
methods, and together with the quantitative comparison,
our survey provides entrance for future UDA researchers.
We also hope that expert-level readers find this survey help-
ful because of the more complete field coverage compared
with prior works. In the dynamic research environment of
UDA, expert-level readers will potentially find our overview
of the most recent developments useful. For lecturers, the
taxonomy and comparison of the individual methods pro-
vide interesting information. In addition, we compare the
task of unsupervised domain adaptation with other related
methods.

The survey is structured as follows. In Section II, we pro-
vide context for related research topics and introduce math-
ematical definitions and principles of domain adaptation.
In Section III, we present our taxonomy and explain the
common methods for each part of the taxonomy. Sec-
tion V describes the employed metrics and provides a
quantitative comparison of the approaches. Finally, we dis-

1We update the website with the latest approaches on a bi-monthly basis
so that it can serve as a data hub for UDA researchers and keeping track of
the current state-of-the-art.

FIGURE 2. Overview of adaptation paradigms. Simplified schematic
visualization. Red and green colors represent the source and target
domains, respectively. Dotted lines indicate that no labels are available
and dashed lines indicates a subset of labels. For weakly-supervised DA
noisy labels are available.

cuss the current research, presenting proposals for refine-
ments and best practices as well as promising research
directions in Section VI, before finishing with our conclu-
sions in Section VII. Overall, we categorize, analyze and
compare more than 140 approaches methodologically and
quantitatively.

II. RESEARCH CONTEXT AND DEFINITIONS
As mentioned before, UDA assumes that no labels are avail-
able for the target domain (cf. Fig. 1). Some tasks are closely
related to domain adaptation. Figure 2 shows an overview of
the most important adaptation paradigms. In the following
section, we first give a brief overview of these related meth-
ods. Next, we introduce a mathematical notation to facilitate
understanding of the various UDA methods. Then, we define
domain shifts and describe the most commonly used bench-
marks.

A. RELATED METHODS
In the following, we briefly explain other approaches for
domain adaptation, which either use some form of labels
or consider other constraints that apply to the availability
of source domain data. Figure 2 provides an overview that
categorizes the existing methods for domain adaptation found
in the literature. We also differentiate the topic from domain
generalization and explain the difference between closed- and
open-set adaptation.
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1) SUPERVISED TRAINING
As visible in Figure 2 (first row), the setting with full labels
available in the target domain is called supervised training.
In this case, no adaptation methods are required. However,
this training paradigm is infeasible since manual annotation
is costly and the number of domains is high. This way of
adaptation is not scalable and will not be considered further.

2) SEMI-SUPERVISED DA
In semi-supervised domain adaptation (cf. Figure 2, sec-
ond row), only a subset of the target domain data has
labels. In contrast to self-training, these labels are not gen-
erated by the segmentation network itself but originate from
human annotations. Only a few works study methods for
semi-supervised domain adaptation [18], [19], [20], [21], but
this research area is small compared to UDA and not the focus
of this survey.

3) WEAKLY-SUPERVISED DA
For weakly-supervised domain adaptation (cf. Figure 2, third
row), samples with noisy labels are available where, e.g., only
bounding box labels are given as a weak label for the task
of semantic or instance segmentation [22]. Another option
is image-level labels, e.g., to predict the presence of classes,
as done in WDA [23].

4) SOURCE-FREE UDA
This is the task of UDA when there is a given model but no
access to the data of the source domain (cf. Figure 2, fifth
row). For standard UDA, the adaptation process primarily
utilizes source and target domains in parallel. In source-free
UDA, in contrast, the adaptation process to the new domains
must occur without forgetting essential information from the
source domain. In this case, the only information that may be
used from the source domain is the implicit information in the
network weights from the pre-training on the source domain,
which includes normalization parameters [24], [25].

5) CONTINUAL/CONTINUOUS UDA
Themain idea behind continual and continuous domain adap-
tation is that a segmentation network is first trained on the
labeled source domain and only afterward adapted to a target
domain. During the adaption process, the source domain is
unavailable. It is, therefore, a decoupling of training and
adaptation, which happen simultaneously in standard UDA.
Here, we want to propose a distinction between continual
and continuous UDA (cf. Figure 2, sixth and seventh row).
While continual means that something happens at (regu-
lar) intervals, continuous means that the adaptation happens
without interruption, e.g., on a single-frame basis [25], [26].
Usually, continual and continuous UDA does not prohibit
the usage of some form of source domain representation,
e.g., a generator network that creates samples [27]. However,
continual/continuous UDA methods can also be source-free

when no source information is available during the adaptation
process [25].

6) DOMAIN GENERALIZATION
This is the task of training networks to perform better
in unseen domains without using any data from the tar-
get domain for adaptation (cf. Figure 2, last row). The
model should generalize well, and the performance is usu-
ally evaluated on multiple unseen domains. The task is
called single-domain generalization (SDG) if only one source
domain is used. It is simply called domain generalization
(DG) if multiple source domains or additional real aux-
iliary domains are employed. Compared to UDA, only a
few works exploit the potential of domain generalization for
semantic segmentation [28], [29], [30]. If it were possible
to train networks that generalize perfectly, then adaptation
to a target domain would no longer be necessary. On the
other hand, it has been shown that even UDA approaches,
e.g., DLOW [31], can also ensure that the trained network
generalizes better. However, since this is not the focus of the
UDA task, these results are often not reported in the papers.

7) CLOSED- AND OPEN-SET ADAPTATION
Concerning the labeled classes in the source and target
domains, a distinction is made between closed-set and open-
set adaptation. Closed-set adaptation refers to the more com-
monly employed method of domain adaptation, where the
set of labeled classes is the same in the source and target
domain. Thus it is assumed that only the visual domain
changes, but the number of pre-defined semantic classes
remains unchanged. In contrast, open-set adaptation assumes
that the sets of labels do not have to be identical and that,
e.g., new classes that have to be learned can occur in the
new domain. Even though this field has not yet been subject
to intensive research, there are first approaches that enable
class- [32] and domain-incremental learning [33]. Although
the open-set scenario is realistic, it is seldom considered in
the academic context; see Tada et al. [34], however, for first
steps. This survey only covers UDA methods that perform
closed-set adaptation.

B. MATHEMATICAL NOTATION
So far, papers on domain adaptation do not use a harmonized
mathematical notation. We first present a unified mathemat-
ical notation to improve understanding and allow a more
straightforward comparison of different methods.

As input to the segmentation network, we define the image
x ∈ GH×W×C , where G denotes the set of integer color
intensity values, H and W the image height and width in
pixels, and C=3 the number of color channels, respectively.
A semantic segmentation network transforms an image into
an output y = (yi,s) ∈ BH×W×S with posterior probability
(score) yi,s = P(s|i, x) for each class s ∈ S at pixel index
i ∈ I = {1, 2, . . . ,H · W }. Here, S = {1, 2, . . . , S} denotes
the set of S classes and B = [0, 1]. The final segmentation
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map m = (mi) ∈ SH×W is obtained with argmax operating
on each pixel i of the network output y = (yi) individually so
that mi = argmaxs∈S yi,s. Note that yi = (yi,s) is the vector
of class posteriors at a pixel with index i. Superscripts ‘‘S’’
and ‘‘T’’ on x, y, and m denote the domain from which the
variables stem, with, e.g., DS being the source domain and
DT being the target domain.

C. DEFINITION OF DOMAIN SHIFTS
The domain adaptation problem can be viewed as overcom-
ing the dataset shift between the source and target domain
distributions: pS (a, b) ̸= pT (a, b). Where pS and pT repre-
sent the source and target distribution, and a and b are the
feature and class variables, respectively, where both a and b
are defined and used separately only for this explanation of
domain shifts. We can distinguish between three distribution
shifts to describe how the domains differ: the prior, covariate,
and concept shift [35].

The prior shift occurs when pS (a|b) = pT (a|b) but pS (b) ̸=

pT (b). The prior shift describes a change in class distribution.
An example of this shift can be found in the distribution of
classes that may differ between domains. In a synthetic source
domain an abundance of pedestrians might be rendered, while
they are rare in the real-world target domain.

For the covariate shift, in contrast, pS (b|a) = pT (b|a) but
pS (a) ̸= pT (a) which means the input distribution changes.
An example of the covariate domain shift is the difference in
styles of the two domains, which can differ concerning, e.g.,
brightness, contrast, saturation, and hue. Similarly, distribu-
tions can differ because objects or textures look different.

The concept shift refers to the case when pS (a) = pT (a) but
pS (b|a) ̸= pT (b|a) so that the conditional distribution differs
and, therefore, the relations between a and b are different.
The same features in the source and target domain describe
different classes. An example can be found in the synthetic-
to-real domain shift case. If a car in the synthetic world has a
similar shape or texture as a truck in the real world, a concept
shift has occurred.

In many practically relevant domain adaptation settings,
the overall domain shift is caused by a mixture of prior,
covariate, and concept distribution shifts. There are several
such domain shifts relevant to computer vision systems.
Training models on synthetic data for the application to
real-world images introduces the synthetic-to-real domain
shift. Several real-to-real domain gaps exist, too. Different
sensors, locations, weather, day and night times, etc., can
cause them. Further domain gaps occur when a new gener-
ation of sensors is implemented in an autonomous vehicle,
or the same sensor is mounted at different positions on a dif-
ferent car type. Slight differences in illumination, resolution,
noise, etc., can also lead to significant domain shifts. Since
each domain gapwould require retraining ofmodels with new
data and thus collecting and labeling this data is required, this
can become very costly for large-scale applications. For this
reason, domain adaptation or domain generalization methods

TABLE 1. List of datasets that are typically employed for UDA research.
Shown are the total numbers of available labeled images, as well as the
resolution of the images.

are desired to overcome this issue and provide autonomous
driving functions without needing a large-scale data selection
and the corresponding data labeling effort.

D. BENCHMARKS
In this seection wewill discuss commonly employed datasets,
network architectures, and experimental setups in the field of
UDA.

1) DATASETS
The selection of datasets used for UDA research is small
and contains only two major synthetic and three real dataset,
as shown in Table 1, where only the Cityscapes [6] dataset
is commonly employed as a target domain. This simpli-
fies the quantitative comparison. For the synthetic datasets,
usually, GTA5 [36], extracted from the video game with
the same name, and SYNTHIA [37], specifically rendered
for autonomous driving research, are utilized. It is worth
mentioning that while GTA5 provides synthetic images from
an ego-vehicle view perspective, SYNTHIA contains per-
spectives from both street-level and bird-eye-level views.
CARLA [40] is another popular driving simulator that can
be used to generate synthetic datasets. However, since no
established dataset from CARLA exists, it rarely appears in
UDA research for semantic segmentation [19].

For most works, the target domain dataset is the established
Cityscapes [6] dataset. We also include NTHU [38] and
ACDC [39] in this list. NTHU is rarely applied as a real-
to-real domain shift evaluation benchmark in UDA papers.
This contrasts with the additional value from NTHU since
it shows how the approaches perform on real city-to-city
data. ACDC does not appear in UDA synthetic-to-real works
but is an often used benchmark for real-to-real adaptation
from Cityscapes to ACDC with direct scene correspondences
under adverse weather conditions.

SYNTHIA, GTA5, and Cityscapes in Table 1 represent the
de-facto standard in UDA research for semantic segmenta-
tion. See Csurka et al. [17] for a more extensive overview,
including the number of classes, conditions, etc.

2) DNN ARCHITECTURES
The most used segmentation networks in UDA are the
VGG16-FCN8 [41] and the DeepLabv2 with a ResNet-101
backbone [42]. The more modern ResNet-based architecture
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dominates in more recent works. The variety of network
architectures for UDA research is small, simplifying this
survey’s quantitative comparison.

Other architectures that were used in UDA works are the
MobileNetv2 as a backbone [43], [44], DRN-26 [45], [46],
[47], DRN-105 [48], and smaller versions of the ResNet
like ResNet-18 [49], ResNet-38 [50], [51], [52] and ResNet-
50 [53], [54]. However, all these architectures appear only
rarely in UDA research.

The number of vision transformer architectures (see Sec-
tion III-E4.b) used for UDA is small since the research
on such architectures for UDA only started recently.
DAFormer [55], which is based on SegFormer [56] was the
first work; HRDA has DAFormer as the basis. TransDA [57]
uses SwinFormer [58] as its transformer architecture.

3) STANDARD EXPERIMENTAL SETTINGS
There exists a consensus in the research community for
benchmarking UDA approaches because both datasets and
architectures are the same in many works or at least very
similar. Therefore, they provide a basic experimental setting
for UDA benchmarks. However, in many training details the
approaches differ significantly (like resolution, hyperparame-
ters, dataset splits, etc.), so there are no unified benchmarking
settings. A detailed discussion of these aspects is part of our
discussion in Section VI.

III. UNSUPERVISED DOMAIN ADAPTATION
APPROACHES AND METHODS FOR SEMANTIC
SEGMENTATION
We discuss the methods developed for unsupervised domain
adaptation in this chapter. First, we explain our taxonomy.
Afterward, we present the UDA methods of each part of
our taxonomy in detail. Finally, we review the latest UDA
approaches using vision transformer networks.

We must fix two terms that we clearly distinguish through-
out the remaining survey. An approach or method is an entire
paper that may include several different standalone tech-
niques. For instance, the Fourier domain adaptation (FDA)
approach contains the techniques of Fourier-based style trans-
fer and self-training, so FDA is an approachwith two different
techniques.

A. ADAPTATION SPACES
In order to approach the problem in a structured way, we have
categorized the approaches. In deep learning, there are three
typical spaces, i.e., the input space, the latent representations
(features) within the network, and the output of the network.
These spaces make up our three main adaptation categories
illustrated in our taxonomy in Figure 3. Approaches can
combine methods in different spaces, which we view as
approaches belonging to the category of hybrid approaches.
Additional surrogate tasks can help with adaptation but can-
not be seen as a standalone category. Toldo et al. [59] and
Csurka et al. [17] propose a similar clustering by using the
three spaces. Different from them and as one of our con-

FIGURE 3. Overview of adaptation spaces that are covered in this survey.
The subchapters dealing with the respective space are indicated. Hybrid
methods perform adaptation in at least two spaces or utilize surrogate
tasks.

tributions, we introduce and analyze the category of hybrid
domain adaptation, where we group approaches that combine
two or more spaces.

The description of hybrid adaptation approaches is two-
fold. First, the different techniques employed in the hybrid
approaches are described in detail according to the standalone
category of input, feature, or output space adaptation. FDA
as a hybrid approach, for instance, will be mentioned in the
input and output space subsection since it contains techniques
of both spaces. Secondly, how the techniques of the different
spaces interact and a more approach-level description will
be provided in the section describing the hybrid approaches,
where FDA will also appear. The advantage of this two-fold
description is that the individual techniques of the hybrid
approaches are contextually embedded within their category.
In the hybrid section, the focus is purely on the different
interactions between the spaces.

Unlike the previous surveys, we provide a fine-grained
sub-grouping for each of the four categories. We provide a
table that shows the sub-categorization of the approaches.
The idea behind these tables is that readers interested in a
particular topic, e.g., output-level adversarial adaptation, can
find a compact collection of all approaches employing this
technique in the table. Approaches will appear multiple times
if one approach consists of multiple techniques.

B. INPUT SPACE DOMAIN ADAPTATION
Unsupervised domain adaptation in the input space often
refers to a change in the style of the images. The three main
techniques employed in this adaptation space are depcited in
Figure 4.

Typically, a distinction is made between the style and
content of images. The semantic structure is often consid-
ered the same as the content. Usually, it is described by
well-defined low-level properties of images, such as hue,
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FIGURE 4. The three main input space adaptation methods are
illustrated in this figure. Style transfer and data augmentation usually
change the full appearance of the image, but style transfer does it in a
more target domain directed manner. Image mixing generates images
consisting of source and target domain pixels.

saturation, contrast, brightness, image-noise, depth of field,
etc. However, the appearance of cars, e.g., their shape or
texture, can also be counted as a style, even if the previously
mentioned properties cannot express this. The general idea
with style transfer is to align the source and target domain
distributions on a pixel-level in the input space. This can
happen, in the simplest form, at low-level image properties,
such as hue, saturation, brightness, etc., e.g., by histogram
matching algorithms. More complex methods, e.g., GAN-
based methods, can vary the style even more and can change
textures, depth of field, etc. However, a limitation of many
approaches is that the semantics of the source images must
remain the same so that the labels can still be used. It is
still hard to find a style transfer that maps, e.g., northern
central-European vegetation, cars, traffic signs, etc., to, e.g.,
middle-eastern vegetation, different cars, and traffic signs.
The adaptation techniques that include object shape must be
modeled by feature space adaptation.

When not only the style of images, but also the early feature
maps are modified by the method, we would refer to it as a
feature-level adaptation approach (cf. Section III-C). During
adaptation in the input space, the data samples x used as the
input for the method are modified. Multiple methods can be
used to alter the input images and improve the performance
in the target domain. Usually, style transfer, content mixing,
or data augmentation methods are employed. Style transfer
methods try to match the target and source domains’ style
while not changing the samples’ semantics. For unsupervised
domain adaptation, the style of the source domain, which is
usually synthetic in scientific benchmarking, is transferred to

TABLE 2. Adaptation techniques in the input space. The papers are
clustered and sub-clustered according to similar methodology.

be similar to the anticipated target domain, which is usually
a real-world domain.

Domain adaptation, in most cases, is performed by more
than style transfermethods. Thesemethods are often only part
of the domain adaptation process and facilitate a more rapid
convergence for subsequent methods. Nevertheless, some
approaches solely rely on style transfer [60], [61], [62]. Some
methods perform the style transfer the other way around
so that the target domain images are more similar to the
source domain. By doing this, the target domain does not have
to be anticipated beforehand, but the style transfer method
must be a part of the inference. These approaches can even
be used for continuous domain adaptation under changing
domains [26]. So far, no simple style transfer technique has
been able to achieve a state of the art performance for UDA
on its own. The style transfer methods in the input space are
typically detached from the further training process and are
often combined with other methods.

The style transfer is the most popular approach and is usu-
ally performed utilizing feature transforms [60], [61], [63],
GAN-based networks, e.g., CycleGANs [64], normalization
techniques, such as AdaIN [65], histogram matching [66],
[67], [68], or image processing in the frequency domain [69],
[70]. In recent years several image content mixing methods
were proposed that mix the source and target directly in the
image domain [71], [72], [73], [74], [75], [76], [77], [78].
Also, several data augmentationmethods [79], [80], [81], [82]
were proposed for input space UDA.

In the following, we will briefly discuss the methods.
An overview of these references is given in Table 2. Since the
methods listed under Others do not specify the style transfer
type used, they are not discussed in detail in the remainder of
this chapter.
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1) STYLE TRANSFER
As already mentioned, style transfer is the primary input
space adaptation technique. We will discuss style transfer
using feature transforms, normalization techniques, image
processing in the frequency domain, histogrammatching, and
GANs. Usually, style transfer is applied in one of two ways.
First, the source images can be transferred to match the target
domain during training (cf. Figure 4, upper part). In this case,
during inference, no style transfer is needed. Second, the
target domain images can be transferred to match the source
domain. With this setting, style transfer is also needed during
inference.

a: FEATURE TRANSFORMS
Style transfer using feature transforms must be distinguished
from feature space domain adaptation. The feature transforms
presented here are methods that convert the images of the
source domain into the style of the target domain with the
help of a style transfer network. The features of the original
segmentation network are not adapted during this process.
Instead, an additional network (usually an autoencoder) is
trained on source and target images to transfer the style of
the source images in their bottleneck features.

Earlyworks that employed a style transfer for unsupervised
domain adaptation used simple feature transforms such as
FastPhotoStyle [117], which comprises a two-step styliza-
tion and smoothing process. At first, the style of a content
image is stylized in the style of a style image from the target
domain using an enhanced whitening and coloring transform
(WCT) [118], which is called PhotoWCT. In PhotoWCT, the
upsampling layers of the style transfer network are replaced
by unpooling layers. Afterward, smoothing is performed to
ensure that semantically similar regions are stylized con-
sistently. The FastPhotoStyle method [117] was utilized by
the domain stylization (DS) [60] and the mask-aware gated
discriminator (MAGD) [63] methods, which both randomly
match source and target domain samples. Restyling data
(RD) [61] also employs FastPhotoStyle [117] as a style trans-
fer method and improves the sample matching by computing
so-called perceptual hashes in the frequency domain of the
images. These hashes are then used to match samples for the
style transfer, and it is based on the Hamming distance of the
respective hashes.

b: NORMALIZATION METHODS
The efficacy of normalization methods for style transfer has
been known for some time [88]. Adaptive instance normaliza-
tion (AdaIN) [65] is particularly relevant in this context. The
style transfer with AdaIN uses an encoder-decoder structure
(usually based on a VGG-19 [119] architecture), where the
AdaIN layer receives the features of a content image (in the
case of domain adaptation, usually an image from DS ) and
a style image (from DT respectively). AdaIN then performs
the style transfer by transferring the channel-wise mean and
variance statistics of the features. AdaIN allows as many

different style transfers to be learned for a (content) image
as there are style images.

Methods such as DCAN [89] employ AdaIn and assume
that the mean and standard deviation of the feature maps in an
image generator encodes an image’s style information. They
hence follow the idea to train an autoencoder in a way that
it reconstructs images from the source domain DS . However,
simultaneously, the mean and standard deviations are aligned
between the source image that is to be reconstructed and a
randomly selected image from the target domain DT . Given
that the feature statistics are matched, the generator will
produce the source image in the target domain style. As we
shall see later in Section III-C, this idea is also significant
for the distribution alignment in the feature space. The bi-
directional style-induced domain adaptation (BiSIDA) [86]
employs a source-to-target style transfer for supervised train-
ing and a target-to-source style transfer for the unsupervised
learning branch of the framework. The style transfer is per-
formed using the standard AdaIN method. Also, the CFCon-
tra method by Tang et al. [87] employs an encoder-decoder
network with standard AdaIN layers for style transfer.

The adversarial style mining (ASM) method [84] uses a
newly proposed random AdaIN (RAIN) module for style
transfer. RAIN adds a style variational autoencoder (VAE)
in the latent space to encode the features’ channel-wise mean
and variance statistics into a Gaussian distribution that can be
sampled from the latter. During training, the RAIN module is
trained to iteratively generate harder stylized images around
the initial target sample according to the current learning
state. That way, the segmentationmodel learns more potential
styles in the target domain.

The target-guided and cycle-free data augmentation
(TGCF-DA) method [85] employs a cycle-free generator net-
work that is based on multimodal unsupervised image-to-
image translation (MUNIT) [120]. The generator is extended
by AdaIN layers, which enable several style transfers (as
many as there are style images) to be learned. The network is
trained by a discriminator (distinguishing whether the image
stems from the source or the target domain) and a seman-
tic loss, ensuring that the semantics between the original
source image and the style-transferred source image remains
unchanged.

c: FREQUENCY DOMAIN
Domain adaptation in the frequency domain is a relatively
new field. Yang et al. [69] proposed a new form of style
transfer by implanting low-frequency information from the
target images into the source images. This Fourier domain
adaptation (FDA) is performed in the frequency domain.
Only parts of the amplitude spectrum are exchanged, as these
are assumed to contain the general style of the images.
Similar to FDA, the authors of SUDA [70] employ a style
transfer in the frequency domain. They decompose the input
image into multiple frequency components and train a trans-
former network to recompose a newly stylized image from
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these frequency components. The transformer network learns
to suppress domain-variant contents and enhance domain-
invariant contents.

d: HISTOGRAM MATCHING
Histogram matching is a long-established method [121]
to match the style of images. However, only recently has
there been research for its use for domain adaptation.
Huang et al. [66] tackle the task of panoptic segmentation,
but the technique can also be employed for classical seman-
tic segmentation. They propose an inter-style consistency,
where the input images get stylized, and the segmentation
masks between different styles, e.g., illumination or weather
conditions, are learned to be equal. This is then combined
with an inter-task consistency, which enforces consistent
labels between a semantic segmentation and an instance
segmentation network. They employ a histogram-matching
algorithm [121] for the stylization. Ma et al. [67] propose a
global photometric alignment for style transfer. They align
the source and target images style by histogram matching in
the three channels of the L*a*b* color space. The same global
photometric alignment is also employed by BiSMAP [68].

e: GAN-BASED METHODS
Generative adversarial networks (GANs) currently dominate
the field of input space adaptation methods. GANs modify an
image by a generator network so that a subsequent discrimi-
nator network can no longer distinguish from which domain
the image originates. By training a discriminator network,
high-quality style transfers can be performed. In particular,
CycleGAN [64] has proven to be a successful choice. It pro-
vides a photorealistic transformation between different image
styles and mostly prevents semantic changes in the image
due to the cycle consistency. The goal is to learn a mapping
functionG :DS

7→DT as well as an inverse mapping function
G−1

:DT
7→DS and employ the cycle consistency to enforce

that an image remains semantically the same after mapping
and inverse mapping. However, most GAN-based methods
are limited in terms of the variability of the stylized images.

Methods such as MUNIT [120] that combine GANs
with, e.g., AdaIN, try to overcome this limitation. They use
AdaIN in their generator network to generate more specific
style transfers. The LSD method by Sankaranarayanan et
al. [91] was about the first to employ a standard GAN-based
style transfer for domain adaptation. Also, Chen et al. [90]
employed a GAN for style transfer. The domain invariant
structure extraction (DISE) method [92] tries to disentangle
the images’ structure and texture during style transfer. This
way, the structure and the texture of different source or target
images can be combined. Themethod employs a least squares
GAN (LSGAN) [122] and can be used in both directions.

Li et al. [62] follow a slightly different strategy as they
do not employ a style transfer directly on the image level.
Instead, they propose a label-to-image domain adaptation
(L2I-DA) transfer where they generate image-label pairs in

the target domain style. They also employ a standard GAN
for the image translation process.

DRANet [46] improves the style transfers from the gener-
ator network by searching the target features whose content
component is most similar to the source features. The domain
transfer is performed by incorporating style information from
more suitable target features.

SPIGAN [103] simplifies the CycleGAN architecture by
only using a single sim-to-real generator (no cycle consis-
tency) and a downscaled generator network. The light-weight
calibrator (LWC) method [45] employs the ResNet generator
proposed by Johnson et al. [123] as a data calibrator. The
calibrator can be seen as the generator. Two discriminators
are employed, one on pixel level, and one on feature maps
from the feature extractor. The translation process is based
on an adversarial distribution alignment of the feature space
and a pixel-wise calibration network in the input space. The
pixel-wise calibration is based on an encoder-decoder archi-
tecture and is applied during inference, too.

Cai et al. [112] propose a condition-guided style transfer by
employing a standard conditional GAN [124] that is trained
with a semantic consistency loss. They also utilize concepts
from StarGAN [125] and BicycleGAN [126]. This way, pre-
ferred styles like foggy or cloudy can be added to the
images as needed.

SUIT [113] allows an improved style transfer by design-
ing a novel semantic-content loss that focuses on label- and
content-consistency between original and stylized images to
guide the style transfer. The content-consistency is employed
by comparing features of a pre-trained network for the styl-
ized and the normal input images.

The stochastic image translation method by Chiou et al.
[114] is based on MUNIT [120]. The authors propose not
performing an image-based but stochastic-style translation.
A source encoder encodes the content of the source image,
and a target generator generates stylized versions of this
image by sampling from a style distribution of the target
domain.

The CycleGAN architecture, in particular, has been used
and expanded by many papers as their style transfer network
of choice. The CyCADA method [95] was among the first to
perform a style transfer with a CycleGAN. It also explicitly
encourages high semantic consistency before and after image
translation for the source domain samples with a pre-trained
source segmentation network. Also, CrDoCo [47], MSS [59],
and CADA [96] employ a standard CycleGAN for their
image translation. Zhou et al. [100] show that their
ASANet+ is complementary to style transfer by combin-
ing their method with the image translation module from
CyCADA [95].

The SE-GAN method [107] makes adversarial training
more stable and employs a simple CycleGAN for style trans-
fer. Yang et al. [93] utilize a CycleGAN that uses both a
cycle consistency and a phase consistency loss. They show
that the semantic information is mostly encoded in the phase
from the complex spectrum of the image and enforce its
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similarity for the transformation and inverse transformation
of the CycleGAN.

In DLOW [31], the authors generate a sequence of interme-
diate domains between the source and target. They define a
domainness factor z that affects the generator and the discrim-
inator. They also employ a cycle consistency loss and build
their method upon CyCADA [95].

Another idea is to use a content invariant representation
(CIR) [108], which can be seen as an intermediate domain
between the source and target with the same content as the
source domain and the same style distribution as the target
domain. They use a vanilla CycleGAN to generate this CIR.

A popular approach on which many works build is the
bi-directional learning (BDL) method [98], which improves
the image-to-image translation model by iteratively improv-
ing the translation model with feedback from the subsequent
semantic segmentation model. This way, the image-to-image
translation is not fixed but improves during training and
adaptation. The authors also published their style-transferred
images from the GTA5 [36] and SYNTHIA [37] datasets,
which were used by many subsequent methods. For example,
CDGA [99], SIM [101], MCSSF [105], and BDL+ESL [110]
use this method or the already transferred images.

In contrast to previous works, the authors of LDR [102]
train a style translation model that transfers the target
domain images in order to make them look like source
domain images. They employ the general translation model
of BDL [98] but add a cycle-reconstruction loss to enforce
semantic consistency between the image and the image
reconstructed from the labels. The active pseudo-labeling
(APL) method [94] first adapts the target domain images
to the source domain using a style transfer. Afterward, the
style-transferred images are used to create pseudo labels
that are later used for self-supervised training in the target
domain (cf. III-E). The style transfer is similar to that of
LDR [102], but it replaces the transposed convolutions with
bilinear upsampling and convolutions.

Ramirez et al. [97] employ a CycleGAN for style transfer
from the source to the target domain in their image-level
domain adaptation (ILDA) method. They enforce the similar-
ity of segmentation masks based on style-transferred images
and unaltered synthetic images using a discriminator in the
generation process to avoid artifacts and guide the synthesis.
The DISE-CT method [104] is based on DISE [92] but adds
a cycle consistency to the generator training. It also adapts
the zero loss [127] to a zero-style loss. A content transfer
is employed for long-tail classes of the target domain to
incorporate more of these classes into the training samples.

Dual path learning (DPL) [106] employs two pipelines,
where images are transferred from the source to the tar-
get domain or from the target to the source domain. Both
pipelines are trained interactively with a so-called dual path
adaptive segmentation.

With KATPAN, Dong et al. [109] employ a modified
CycleGAN for the image translation process. They extend the
standard CycleGAN with a transferability-aware information

bottleneck that guides the encoder to encode only discrimi-
native features.

Musto et al. propose a new semantically adaptive image-
to-image (SA-ITI) translation [83]. They utilize the segmen-
tation maps from the source image provided by the segmenta-
tion network to guide the style transfer of the source domain
images to the target domain. As their style transfer network,
they design two coupled GANs similar to a CycleGAN and
adaptively denormalize each pixel based on the semantic
information. The translated image is then fed to the segmenta-
tion network again. Consistency is enforced between the two
output posteriors using a new symmetric cross-entropy loss.

However, there are also further enhancements of the Cycle-
GAN architecture, e.g., the symmetric adaptation consistency
(SAC) method uses a StarGAN [125] for image-to-image
translation.

2) DATA AUGMENTATION
An additional idea for domain adaptation in the input space
is data augmentation. With data augmentation, the styles of
the images are changed in a less targeted manner than with a
style transfer (cf. Figure 4, middle part). Thus, no attempt is
made to represent the target domain as precisely as possible.
Instead, the images are changed as diversely as possible to
train a network that is as robust as possible against various
domain shifts. This is related to domain randomization, which
is often used for domain generalization.

Zhou et al. [82] perform a class out strategy in the input
space by employing a ClassDrop mask generation algo-
rithm that provides class-wise perturbations. The learning
texture invariant representation (LTIR)method [79] generates
a stylized version of the commonly used GTA5 [36] and
SYNTHIA [37] datasets to force the model to learn texture
invariant representations, which are usually not learned from
style-transferred images.

Huang et al. [80] train a more robust network against
domain shifts by learning Fourier domain adversarial
attacks and iteratively learning to defend against these
attacks. These attacks are some form of style augmenta-
tion. Araslanov et al. [115] perform heavy data augmentation
and then calculate output consistency using differently aug-
mented images. The unsupervised contrastive domain adap-
tation (UCDA) method [81] also employs multiple augmen-
tation techniques on source and target domain images.

3) IMAGE MIXING
Similar to data augmentation techniques, more and more
methods have recently been developed that mix source
domain images with portions of target domain images
(cf. Figure 4, lower part). One popular method is domain
adaptation via cross-domain mixed sampling (DACS) [71],
on which many other methods have been built since. DACS
mixes samples from the two domains along with the corre-
sponding source labels and target pseudo-labels. The labeled
source domain images and the mixed images are used for
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FIGURE 5. Feature space adaptation methods: The encoder of a CNN
projects the input image to the feature space. Here before domain
adaptation, the source and target distributions are not aligned. Hence the
source domain-trained classifier does not generalize to the target
domain. After feature space adaptation methods are used, the feature
distributions are generally aligned much better, which improves
performance on the target domain.

training. It also applies color augmentation and Gaussian
blurring to the training samples.

The RCCR approach [75] employs ClassMix [128] and
CutMix [129] as proposed by DACS [71]. Also BAPA-
Net [74] solely employs CutMiX [129]. Likewise, the CorDA
method by Wang et al. [77] is based on DACS [71] and
utilizes all of its input space adaptations. Zhou et al. propose
a new image mixing method termed CAMix [76], where
they leverage contextual information on relationships to guide
the image mixing. It can be seen as an improved version of
DACS.

DBST [130] adds depth guidance to DACS and the
authors explicitly propose their method as a module that
can be combined with any other UDA method like, e.g.,
ProDA [131]. The dual soft-paste (DSP) method [72]
improves on DACS [71] by pasting mainly long-tail classes
from the source domain in source and target domain images.
It creates two intermediate domains, which serve as a bridge
between the domains. They preserve the original domain
information by keeping objects, layout, and general structure
the same.

PixMatch [73] employs a consistency training with two
different perturbations added to the images in its best work-
ing model. The authors show that Fourier domain and Cut-
Mix [129] perturbations yield the best results.

C. FEATURE SPACE DOMAIN ADAPTATION
As identified in the previous sections, the distribution shift
between the source and the target domain leads to decreased
performance. Since the pre-logit feature space (the output of
the last layer before the classifier) distributions of the source
and target domain differ, a classifier trained on one cannot
generalize well to the other (see Figure 5). Hence, we discuss
approaches that try to adapt the model from the source to
the target domain, trying to align the distributions in the
feature space. In this case, the alignment of the distributions
depends on the learned encoder-decoder function that maps
the input to the (pre-logit) feature space. Therefore, distribu-
tion alignment between input data from the source and the

TABLE 3. Adaptation methods in the feature space. The papers clustered
and sub-clustered according to similar methodology.

target domain means learning the encoder-decoder function
in a way that maps input from both domains that semantically
represent the same things to a similar point in the feature
space. In this case, the classification hyperplane learned on
the source domain will generalize well to the target domain.

One can identify different subclusters in the methods for
distribution alignment in the feature space (see Table 3) that
we will discuss in the following subsections.

1) DISTRIBUTION DIVERGENCE
Methods that fall in this cluster try to minimize a divergence
measure describing the distance between the source and the
target domain.

a: ADVERSARIAL ADAPTATION
Ganin et al. [172] introduced the first and most prominent
among these methods. Although this paper deals with image
classification, this work significantly impacted unsupervised
domain adaptation for segmentation. The authors define the
distance between the source and the target domain as the so-
called H-divergence. The H-divergence is computed based
on a classifier, classifying whether the feature representa-
tion of an image is from the source or the target domain.
Given such an optimal domain classifier, the H-divergence
is minimal if the error of the optimal classifier is maximized.
Minimizing the H-divergence poses a min-max problem. The
H-divergence is minimal if the encoder is learned, so the
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domain classifier yields a maximum error rate. In contrast
one has to minimize the error to obtain the optimal domain
classifier. Ganin et al. [172], propose a gradient-reversal layer
(GRL) between the domain classifier and the feature space to
solve this problem. During the backward pass, the gradients
of the domain classification loss are applied to the domain
classification head but inverted for the encoder-decoder func-
tion and thereby minimizes the H-divergence.

There is a multitude of methods (see Table 3) that make use
of this idea for the task of semantic segmentation.FCNs in the
Wild [12] is the earliest example of adversarial learning in the
feature space. The proposed method applies the adversarial
loss function on the pre-logit feature map (the last represen-
tation before the classifier). Hoffman et al. [12], however,
implement the adversarial principle in a different way. They
define a domain classification loss that is used to optimize
the domain classifier and the encoder-decoder weights of
the segmentation network and use the inverse of this loss
to update only the encoder-decoder weights. Both losses are
applied in an alternating way. This way of implementing the
adversarial principle of the H-divergence, without a gradient
reversal layer, is applied by the majority of UDA approaches.

Building on FCNs in the Wild [12], many approaches use
adversarial training as an additional tool in their domain
adaptation strategy, e.g., WDC [138], RPT [148], DPL [106],
CAA-Net [155], and SWLS [53]. There are, however, many
works that introduce new strategies to improve adversarial
learning.

b: SUB-DISTRIBUTION ALIGNMENT
The alignment of the global distributions of the source and
target domain can lead to issues. A possible consequence
of global distribution alignment is that sub-distributions of
source and target domain that are closely aligned even before
the adaptation are affected negatively by the global align-
ment (see Luo et al. [135]). Sub-distributions in our con-
text denote parts of the source or target domain feature
distributions that depend on, e.g., the classes or the spatial
position. Wang et al. [140] argue that parts of the class-
wise sub-distributions might get mixed up through the global
distribution alignment. They further point out that the dif-
ferent frequencies of classes lead to the situation that the
sub-distributions of frequent classes are aligned better than
rare classes’ sub-distributions. Finally, Chen et al. [147] spec-
ulated that another issue with global distribution alignment
through GANs are non-contributing ambiguous features.

Chen et al. [38] and Du et al. [132] introduced early
approaches to align the class-conditional sub-distributions.
Their idea is to introduce a class-wise adversarial train-
ing. The discriminator classifies between the source and
target domain only for feature representations of the same
class. The approaches use self-inferred pseudo labels on
the target domain to implement the class-dependent domain
classifier. Additionally, the approach weighs the adversar-
ial loss higher for classes with low average confidence.
The work by Du et al. [132] improves the approach of

Chen et al. [38] by addressing the inconsistent adaptation
issue. CCDA [144] addresses the alignment of the class-
conditional sub-distributions of classes with different fre-
quencies. Wang et al. [144] employ two discriminator net-
works, one for coarse-level alignment and one for pixel-level
alignment. For the coarse-level alignment, the discriminator
network predicts the domain label of every coarse feature
representation element and the classes present in the recep-
tive field. The second discriminator computes the adversarial
loss pixelwise. The influence of each class is normalized
with its frequency, giving frequent and rare classes a simi-
lar weight. Additionally, they weigh spatial elements higher
which possess a high classification uncertainty. FADA [140]
and CCDA [144] follow a very similar idea.

CCD [147] tackles the problem that non-productive
ambiguous features are learned during global distribution
alignment through GANs. To prevent this, they also train
a segmentation loss on the sub-network in addition to the
discriminator. However, the segmentation on this network is
not backpropagated to the shared backbone.

Finally, ROAD [145] assumes that similar classes occur at
similar spatial positions in an image and uses the adversarial
loss dependent on the spatial position. Their domain classifi-
cation loss is computed for predefined regions (grid elements)
in the image. Given that similar classes and objects appear at
similar spatial positions, the source and target domain distri-
butions of grid elements match well a priori. The adversarial
distribution alignment hence matches sub-distributions that
are similar.

c: ADVERSARIAL TRAINING WITH ATTENTION
The following approaches aim at guiding the adversarial
adaptation process to the most relevant regions. For this
purpose, the approaches utilize an implicit or an explicit way
of guiding the attention of the adaptation process.

Li et al. [133] use spatial and channel attention to achieve
this goal. They create a so-called highly embedded feature
vector representing information about the feature space, the
network prediction, and spatial and channel-wise attention
maps. The adversarial training is done based on this feature
vector so the goal goal is to align the distributions of the
source and target domain of the vector.

DAST [139] uses discriminator confidences to measure the
alignment of the source and target domain. After an initial
adversarial alignment, the authors weight the feature map
of the target domain with the domain classification output.
A high confidence score of the discriminator indicates that
a feature representation is easily identifiable as part of the
target domain. Hence such a feature representation still has to
be aligned to the source domain and is given a high weight.

Chen et al. [146] do not directly model the attention
via a measure for the distribution alignment or a spatial
attention module. They instead assume that the semantic
edges or boundaries between classes are significant for pre-
dicting semantic segmentation. Thus the network comprises
semantic and edge (class boundaries) segmentation branches.
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In order to make the edge predictions domain-invariant,
adversarial training in the edge branch feature space and fea-
ture fusion between the semantic and edge branch is applied.
The edge feature distribution alignment guides the attention
implicitly to the class boundaries.

d: ADVERSARIAL TRAINING ON STYLE
As described in Section III-B, style transfer enables super-
vised training on source domain images with the style of
target domain images. Apart from that, several approaches
utilize style transfer for adversarial adaptation in the feature
space.

CyCaDa presented by Hoffman et al. [95] and as described
in Section III-B trains a CycleGAN network to transform
source domain images into the target domain and vice versa.
Apart from this main contribution, the approach applies
adversarial learning between the stylized source domain
images and the not transformed target domain images. The
discriminator distinguishes between the respective feature
representation of stylized source domain and the target
domain images.

CrDoCo [47] trains two segmentation networks on the
source domain labels, a source, and a target domain net-
work. The target domain network is trained with the source
domain labels but with style-transferred images. Two sep-
arate discriminators enable the adversarial training in the
feature space of the two networks. The discriminator for
the source domain network takes feature representations of
source domain images and target domain images that were
transferred to the source domain. Vice versa, the target
domain network is trained. A consistency loss between the
outputs of the two networks for the target domain images and
the transferred target domain images is applied. The fact that
the source and target domain only differ in style but not in
content facilitates the distribution alignment. The authors of
MSS [59] follow a similar approach as in CrDoCo [47]. The
main difference to CrDoCo [47] is that the encoder computing
the feature representations is shared between the domains.

LWC [45] is different from the previous works because
it tries to align the distributions of the source and target
domain not by altering the encoder but by transforming the
input image. The authors of LWC [45] present a calibrator
strategy for domain adaptation. Given a model trained on the
source domain, the aim is to train a calibrator network that
transforms the input image in such a way that the distributions
of the source and target domain feature representations are
aligned in the feature space of the source-trained segmenta-
tion model.

e: SHARED STYLE GAN
Most approaches that use a shared style GAN rely on the
original GAN principle presented by Goodfellow et al. [173].
These approaches usually have four elements: A shared
encoder E that generates a shared feature space; a segmen-
tation classifier C that computes the semantic segmentation

from the feature map produced by E; a decoder G that
reconstructs the input image (mostly trained by L1 loss); And
finally a discriminatorD that tries to classify the image output
of G into either being ‘‘fake’’, or ‘‘real’’.

The approach presented in LSD [91] has all the architec-
tural elements described. The discriminator D distinguishes
between fake and real source domain images and fake and real
target domain images. The decoder G generates fake target
and source domain images by adding dropout noise to the
feature embeddings generated by E. An adversarial loss is
computed between real and fake images inside each domain
and cross-domain. This way, the encoderE is trained to output
similar feature space embeddings for the source and target
domain. C takes this domain-aligned feature map to compute
the segmentation. CAA-Net presented by Ruan et al. [155]
follows a similar direction as LSD [91].

The architecture in PTP [154] consists of the elements
and again follows a similar principle as CAA-Net [155]
and LSD [91]. Similar to LSD [91], the final objective is
to achieve similar feature embeddings for both domains by
applying an adversarial loss. The biggest difference is that,
e.g., on the source domain ‘‘real’’ would be the reconstruc-
tion of the source domain image and ‘‘fake’’ would be the
reconstruction of the same image in a target domain style.

CLADA [153] computes a transformation that is added
to the pre-logit feature space of a segmentation network to
transform the source domain features to the target domain.
The classifier is trained on a target domain feature distribu-
tion given such a transformed source domain feature space.
The conditional generator G takes in a noise channel and
a low-level source domain feature map of encoder E. The
two inputs are concatenated and passed through a ResNet
architecture, computing the transformation. The discrimina-
tor distinguishes between transformed and non-transformed
source domain feature maps.

The network architecture of Lee et al. [104] has three
encoders that share the first convolution layers. One encoder
extracts the content, and two other encoders extract the
source and target domain style information, respectively.
The decoder computes the segmentation, and the other two
decoders compute the image reconstruction in the source or
target domain style. The authors use a zero loss function,
which minimizes the L1 norm so that the two encoders cap-
ture unique information that only exist in the source domain
and target domain. According to the authors, the source
encoder only learns the style-independent content features.

f: MAXIMUM CLASSIFIER DISCREPANCY (MCD)
Next to the H-divergence, other distribution discrepancy met-
rics are used for distribution alignment in the feature space.
Saito et al. [48] introduce an approach based on the maximum
classifier discrepancy (MCD). TheMCD is computed by first
training two classifiers for the source domain, mapping the
same feature map into a segmentation. In the second step, the
discrepancy of the probability output of these two classifiers
is maximized for the target domain. The discrepancy between
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the class probabilities is computed using the L1 norm. The
segmentation loss is trained on the source domain in parallel
to keep the source domain performance from degrading. The
result is two classifiers that agree with each other for sam-
ples with support from the source domain distribution and
disagree with each other for samples that are not represented
well in the source domain. The latter case characterizes most
of the target domain samples. In the third step, the feature
extractor is then optimized to minimize the MCD for the
target domain. This causes those samples from the target
domain far away from the source domain distribution to move
closer to the source domain distribution (here, the support of
the source domain is given, and the two classifiers agree).
The three steps are iterated, which results in an adversarial
optimization.

Lee et al. [152] advance this work by introducing an
improved way of computing the discrepancy between the
classifier probability outputs. The authors propose the sliced
Wasserstein discrepancy, which considers the properties
of the underlying geometry of probability space and thus
improves upon the L1 norm used in [48]. Further follow-up
work is presented in Li et al. [151] where two classifiers are
trained on the source domain while also updating the feature
generator. Then they maximize the classifier discrepancy on
the target domain while ensuring the source domain classifi-
cation stays the same. In the final stage, they train the feature
generator to minimize the classifier discrepancy, pushing the
target domain data to the statistical support of the source
domain.

g: OTHER METHODS FOR DISTRIBUTION DIVERGENCE
MINIMIZATION
MMD [72] uses the soft paste algorithm, combining two
images by a weighted overlay (see Section III-B). A refer-
ence source domain image is pasted into a target and source
domain image. This is done based on a mask containing
relevant classes in the reference image. The authors try to
align the feature space representation of the source and tar-
get image in the region of the mask. The minimization of
the squared difference of the kernel-mean-embedding of the
feature representations in the mask regions in the reproducing
kernel Hilbert space introduces the alignment. In addition to
the alignment in the mask region, the authors apply a global
alignment using the same method (MMD) without filtering
with the reference image mask. The general activation match-
ing (GAM) [143] approach trains two networks, one for the
target and one for the source domain. The authors apply an
L2 minimization of the difference of the weights between
the source and target domain networks and Jensen-Shannon
divergence matching between the output of source and target
domain. The latter is optimized in an adversarial manner.
Additionally, the feature maps of the target domain are scaled
to the source domain mean and variance. These adaptation
methods are applied in each layer of the network. PFR [174]
approach utilizes the L2 distance of the feature representa-

tions of source and target domain images. The style features
and content features are computed using the method pre-
sented by Gatys et al. [175]. The L2 distance is minimized
at different feature levels.

2) SELF-SUPERVISED LEARNING
Self-supervised learning is based on so-called pretext tasks
that can be annotated automatically without human effort.
The assumption is that the training on pretext tasks results
in an encoder that produces features that are relevant to the
actual task that should be solved, i.e., semantic segmentation.
Since self-supervised learning can be used for unsupervised
feature learning, it is often applied for pre-training. More
importantly, in our case, it is an essential method for unsu-
pervised training on the unlabeled target domain, too.

a: AUGMENTATION AND DEPTH
SSL-UDA [176] and SSDA [170] introduce a process tomake
use of self-supervised learning for an implicit alignment of
the source and target domain. In addition to the main task of
semantic segmentation, they employ the pretext tasks image
rotation, image flipping, and location prediction of image
crops. These tasks are trained on the source and the target
domain jointly. The idea is that by training the encoder to
produce relevant features on the source and target domain,
the distributions of the source and target domain will also
align in the feature space. The authors of SSL-UDA [176]
show that the centroids of both distributions get closer over
the training epochs. However, the quality of such approaches
is dependent on the pretext task. The approaches presented
in GUDA [168], CTRL [149], and CorDA [77], show that
depth prediction and ego-motion estimation are meaningful
pretext tasks. GUDA [168] makes use of recent advances in
the domain of unsupervised depth estimation. In addition to
the semantic segmentation on the source, domain the authors
train an unsupervised depth estimation on the target domain
that implicitly predicts the ego-motion. Since the predic-
tion of pixel-wise depth maps requires similar features as
semantic segmentation, utilizing depth for the pretext task
trains the encoder to extract relevant features even on the
target domain. CorDA [77] and CTRL [149], in contrast to
GUDA [168], do not train the unsupervised monocular depth
estimation as a pretext task. Instead, the authors assume fixed
depth labels, which unsupervisedmonocular depth estimation
approaches can compute, too. InWang et al. [77], another dif-
ference can be found in how depth estimation is incorporated
via spatial attention into semantic segmentation. For further
details of how approaches incorporate depth and ego-motion
pre-text tasks for self-supervised feature learning, refer to
Section III-D.

b: CONTRASTIVE LEARNING
Unlike the implicit alignment of the feature distributions,
self-supervised approaches are also used for direct align-
ment. DACL [161], SPCL [160], UCDA [81], PWCL [162],
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RCCR [75], and CLST [159] make use of contrastive self-
supervised learning.

Contrastive self-supervisedmethods are based on so-called
positive and negative pairs. In general, such methods aim
to make the feature representation of positive pairs more
similar and those of negative pairs more different. It depends
on the task and method how positive and negative pairs are
constructed. A positive pair are, e.g., two instances of the
same class or two augmented versions of the same object.
In the case of domain adaptation, the construction of positive
and negative pairs is not trivial because no labels are available
in the target domain.

The approach presented by Shim et al. [161] uses a
CycleGAN-generated style transfer from the source to the tar-
get domain. The resulting pseudo-target domain images with
ground truth labels yield pixelwise class information. The
contrastive loss can be computed based on the so-constructed
positive and negative pairs.

The authors of CLST [159] follow a different approach.
The idea is to construct high-quality pseudo labels for the tar-
get domain. Given such pseudo labels, one can construct pos-
itive and negative pairs across the source and target domain.
The positive and negative pairs are constructed between the
source domain class centroids and the target domain class
centroids for each target domain image. The feature represen-
tations of the target domain are clustered towards their respec-
tive source domain centroids andmoved away from thewrong
source domain class centroids. The approach of SPCL [160]
is similar to CLST [159]. The authors compute the average
feature representations of each class on the source domain
and update them in a moving average way. The contrastive
loss is computed from the feature representation of each pixel
to the centroids. In the target domain, the assignment is done
by the pseudo-labels of the network.

RCCR [75] combines contrastive learning with knowledge
distillation and introduces both a teacher and a student for
the projection head. Differently from other works, the pro-
jection head consists of convolution layers. The positive and
negative pairs are constructed by the student and teacher
network based on a source-target mixed image and a regular
target image. As the only UDA approach, RCCR utilizes
a memory bank to include negative samples from previous
batches to increase the variety of the negative pairs and
thereby improve the discriminability of the learned represen-
tations. UCDA [81] follows SimCLR [177]. It adds twoMLP
layers to transform the feature representations into a 128-
dimensional vector representation. Class prototypes are com-
puted per batch. Each feature vector contributes to each class
prototype according to the softmax probability of the teacher
network. Then anchor features are chosen within the same
domain, and the contrastive loss is computed. Additionally,
they choose anchor features in the source domain and assign
them to the corresponding target domain centroid.

PWCL [162] determines positive and negative pairs
between source and target domain image patches. The
use of image patches is a distinct feature and is done

through multi-level spatial pyramid matching. Their con-
trastive approach is close to the idea of MoCo [177] and
utilizes the cosine similarity.

SCDA [167] differs from the previously described con-
trastive approaches because it does not create positive and
negative pairs based on concrete feature representation, but
rather operates on class distributions. The authors estimate
the distributions of each class in the feature space based
on source domain statistics using the mean and covariance.
It is computationally infeasible to compute the contrastive
loss for multiple positive and negative pairs. To resolve this
limitation Li et al. derive a loss that directly utilizes the
gaussian distributions of the positive and negative classes.

c: SEMANTIC CLUSTERING
Apart from the implicit adaptation through self-supervised
learning and the construction of semantic pairs in the
source and target domain, one can identify a third class
of self-supervised domain adaptation approaches. Semantic
self-supervised approaches as presented in DANCE [178]
CAM [166], CFContra [87], SCDA [167], BAPA-Net [74],
SWLS [53], and SSS+ST [165] which all aim to cluster
the pre-logit feature space towards so-called class prototypes
directly. These class prototypes are vectors that represent the
pre-logit feature representations of their respective class.

By advancing the method proposed by DANCE [178]
Niemeijer et al. with SSS+ST [165] present an approach for
semantic self-supervised learning for semantic segmentation.
The class prototypes are computed as the moving average of
source domain feature representations of the respective class
during the training.

The authors of CFContra [87] compute the average fea-
ture representations on the source and on the target domain.
The target domain centroid is computed by assigning pseudo
labels based on the distance of a feature representation to the
source domain class centroids. Based on that, the two closest
centroids are computed. The authors compute the contrastive
loss between each combination of source domain features,
target domain features, source domain centroids, and target
domain centroids.

The authors of CAM [166] apply prototype clustering on
both source and target domains. For each class, a single
target domain feature representation is selected to serve as the
prototype for the class. This prototype feature is computed by
determining the feature representation that has the maximum
cosine similarity to all the other feature representations of
the same class. The similarity matrix and the entropy mini-
mization are computed similarly to SSS+ST [165]. Distinct
from this paper, the authors propose a contrastive clustering
loss. This loss takes normalized first-order statistics (mean
representation) of each class cluster from the source and
target domain and uses the euclidean distance as a distance
metric for the clustering of the mean representations.

The authors of OCE [44] apply feature clustering in the
source and target domain, aiming to group feature vectors of
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the same class together and those of different classes away
from each other. Notably, OCE differs in the computation of
the cluster centroids and the distance metric compared to the
previous approaches. The class centroids are computed based
on the current batch, both on the source and target domain.
The distance metric that is used to define the similarity is
the L1 norm. During optimization, the L1 norm between
the current feature representation is minimized to centroids
of the predicted class and maximized to centroids of the
other classes. Additionally, they introduce an orthogonality
requirement meaning that feature vectors of different classes
are forced to be orthogonal in the feature space. The orthog-
onality requirement is based on the cosine similarity between
the current feature representation and the class centroids.

The method introduced in MCSSF [105] is also based
on clustering. The authors introduce a dictionary containing
the correctly classified feature representations in the source
domain is defined. The target domain feature representations
of the current batch are stored in a dictionary, also. A cosine
similarity matrix is computed between the target and source
domain features of the same class. Elements of this matrix
representing low similarities are eliminated by thresholding
and the cosine similarity of the remaining elements is maxi-
mized. Therefore, this approach does not optimize the feature
representations of different classes to be dissimilar. This is
also the case for LSR [179] and BAPA-Net [74].

Similarly, the authors of LSR [179] apply non-contrastive
clustering to prototypes. The prototypes are computed for
source and target domain and updated via a moving average.
The authors minimize the L2 norm of each feature representa-
tion to its corresponding class prototype. The correspondence
to a class is determined based on the prediction probability.
Additionally, they enforce perpendicularity between proto-
types of different classes (as in OCE [44]) and the norm of
the target and source domain features to be the same. They
assume, according to recent research by Xu et al. [180], that
target domain feature vectors have a smaller norm. Enforcing
the norm to be the same in the target and source domains
introduces domain alignment.

SIM [101] is also based on non-contrastive clustering but
distinct from the previous approaches the clustering is done
differently for stuff classes like road or sky and thing or
instance classes like car or pedestrian. For the stuff classes,
the authors compute multiple average feature representations
per class by averaging the feature representations. For a given
target domain centroid, the L1 norm is minimized towards
the closest source domain centroid of the predicted class.
For a given target domain instance centroid, the L1 norm
is minimized towards the closest source domain instance
centroid of the predicted class.

Li et al. [74] (BAPA-Net) assume that near-boundary pixels
are hard to classify and propose a special handling of the
boundary regions, different from the previous approaches.
The authors employ the CutMix [129] operator to paste
source pixels and labels to the target domain, artificially cre-
ating more boundary pixels that are assigned a higher weight.

They employ a prototype clustering algorithm between the
source and mixed target domain images. The prototypes of
the mixed target domain in the current batch are computed by
assigning the feature vectors to the predicted class and filter-
ing out those feature vectors for the centroid computation that
are too close to a boundary. The class-wise centroids of the
mixed images are optimized to minimize the L1 norm to the
closest source centroid of the same class.

As we have seen, the above clustering approaches often
use the classification of feature representations to determine
to which centroid the current (target domain) feature repre-
sentation should be clustered. Hence a good classification
is necessary. Based on this, CaCo [164] shows that existing
domain adaptation methods can profit from an additional fea-
ture space clustering, given that they provide a good classifier
to determine the clustering target centroid.

D. OUTPUT SPACE DOMAIN ADAPTATION
Output space adaptation methods can be formally defined by
the distinctive property that the pixel-wise logits or softmax
probability outputs yi,s = P(s|i, x) of the network are utilized
for the adaptation.

Output space adaptation methods can be subdivided into
different subcategories, which are shown in Table 4. The two
most popular and commonly employed output space adapta-
tion methods are self-training and adversarial learning, while
several other methods have also been utilized for adaptation,
such as entropy-basedmethods and consistency or contrastive
learning.

1) SELF-TRAINING
The general idea is to retrain the network on labels that are
generated by itself (see Figure 6). In the unsupervised domain
adaptation setting, the network F(·) is trained in the source
domain DS in a supervised manner as the first step. In the
second step, the trained network generates the raw predictions
by running inference in the target domain DT delivering y =

F(xT; θ ). Because of the domain shift, y is noisy and contains
wrong labels, so a direct utilization as pseudo-ground truth
is not optimal. Instead, methods are required to discriminate
between reliable and non-reliable predictions.

For this reason, the distinctive operation of self-training
methods is mostly the filter operation yTpseudo = U(y),
which removes predictions with low confidence. A small sub-
taxonomy of self-training methods is given in the second
column of Table 4. These methods are particularly often
used in hybrid approaches and only rarely as stand-alone
adaptation methods (cf. Section III-E).

Some methodological characteristics are shared among
self-training methods. At the beginning of UDA research, one
of these was a so-called warm-up step [159], [185], [214],
where a different adaptation method is employed to obtain
an initial adaptation of the network and a better start perfor-
mance for the pseudo-labels. However, with the rise of hybrid
methods, dedicated warm-up steps became obsolete. Also,
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TABLE 4. Adaptation methods in the output space. The papers are
clustered and sub-clustered according to similar methodology.

often multiple iterations or stages of self-training are per-
formed to iteratively increase the performance of the pseudo-
labels [52], [131], [184], [185].

a: GLOBAL THRESHOLDING
Global maximum softmax thresholding is the simplest
method employed by several approaches (see Table 4). These

approaches take the softmax probability distribution P(s|i, x)
as a pixel-wise confidence estimation of the network and filter
out every pixel whosemaximum softmax probability is below
a certain class-independent threshold, often 0.9 or 0.95.

b: ADAPTIVE TRAINING
Several other researchers propose extended softmax thresh-
olding mechanisms belonging to the adaptive softmax thresh-
olding category. One important motivation for this group
of methods is not to treat all classes in the same way but
employ different adaptive thresholds to the classes since not
all classes have similar output probability distributions due to
the domain shift. Class-balanced self-training (CBST) [52]
introduced these class-wise thresholds as one of the first
works. It combines output normalization and class-specific
quantile-guided thresholding. The best pi percent of the pixels
per class i are chosen as a pseudo-label, and pi is increased
over the self-training iterations. Several self-training methods
are directly based on CBST, e.g., CVRN [66], MRNet [187],
MLSL [50], and CSCL [142]. Other approaches only use
the class-wise quantile-guided thresholding as a self-training
method, where the top p% pixels of each class is selected,
e.g., CCM [186], CSCL [142], APL [94], PA+CCR [67],
and SCDA [167]. Additionally, regularization methods for
CBST were proposed. The cross-view regularized network
(CVRN) [66] extends the CBST method by an inter-task
and inter-style regularized multi-task self-training, which
enforces consistency between instance and semantic seg-
mentation and two different styles. Confidence-regularized
self-training (CRST) [184] introduces label- and model-
regularized self-training. In addition to CBST three dif-
ferent regularization techniques are utilized to penalize
over-confident labels to output a more uniform probability
distribution. All three regularization methods L2, entropy
regularization, and KL divergence regularization, achieve
similar performance.

Stuff and instance matching (SIM) [101] utilizes a partially
adaptive class-wise thresholding by computing the class-wise
median of the maximum softmax probabilities across the
entire target dataset. The median is used as a threshold if
being smaller than a fixed threshold of 0.9.

Contrary to previous works, ProDA [131] proposes not
iteratively to change the hard pseudo-labels but to keep
them fixed and weigh them instead. The authors show that
both stage-wise self-training and the parallel update of net-
work and pseudo-labels (trivial solution) lead to sub-optimal
results. This is notably different from popular self-training
strategies such as CBST, where a self-paced scheme with an
increasing amount of labels is used. The ProDA weights are
computed based on prototypical features (see Section III-C),
and ProDA outperformed previous self-training approaches
by a large margin. Note that also additional methods such as
knowledge distillation (see Section III-D4) contribute to the
performance increase.

The predictions from past iterations can be complementary
utilized to refine the pseudo-labels. IAST [185] extends the
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FIGURE 6. Overview of output space adaptation methods: Simplified and
exemplary schematic visualization. Deviations of certain approaches from
this basic scheme are possible.

quantile-guided class-wise thresholding to instance-adaptive
thresholding, where the applied threshold is an exponential
moving average of the quantile-based image-specific thresh-
old and the history of thresholds from previous samples.
In this way, information from both other instances of the
dataset and the current instance are considered for thresh-
olding. Similar to that, SSAC [115] utilizes an exponential
moving average of class-specific prior probabilities (certain
pixel belonging to a certain class) and introduces two hyper-
parameters so that the threshold for often-occurring classes,
such as road, etc. remains unaffected but decreases for rare
classes such as traffic light, etc. CLST [159] uses a tem-
poral ensemble by storing predictions from past iterations
in a weighted manner. The pseudo-labels are obtained by a
majority vote of the stored predictions, and a class weighting
based on the class frequencies is also employed.

Next to the pixel-wise self-training methods, a smaller
cluster of methods emerged, which can be seen as image-
level self-training. It can be distinguished by its characteristic
to employ self-training for patch- or image-level predictions.
Often approaches of this cluster make use of multi-scale
domain alignment to obtain both local and global alignment.
A popular representative of this cluster is PyCDA [215].

c: IMAGE-LEVEL SELF-TRAINING
Next to the standard pixel-wise self-training with softmax
thresholding, self-training on larger patches with patch-level
pseudo-labels is conducted in a curriculum manner. The
patch-level labels are obtained by average pooling on the
pixel-level labels and thresholding. This method’s highest
level of abstraction is the prediction of the global label dis-
tribution of the entire image. CDA [190] shares significant
similarities with PyCDA since it also utilizes the prediction of
global image class distribution and superpixel class distribu-
tion. In contrast to PyCDA, logistic regression, and a support
vector machine are used for the corresponding tasks and no
pixel-level pseudo-labels are utilized. The authors argue that
estimating global class distributions is easier than pixel-wise
pseudo-label prediction. Similarly, pivot interaction transfer
(PIT) [171] utilizes multi-nomial logistic regression. It is
trained on the source domain with the image-level class dis-
tribution to train multiple region expansion units. These units
consist of a convolution, and an up-sampling operation and
with different smoothing parameters in the aggregation layer
afterward, the different units focus on different object sizes.
This is combined with a knowledge transfer to the pixel-level
source segmentation branch.

WDA [23] simplifies the training task further by training a
network with a class-wise binary cross-entropy loss on the
image-level to predict whether a class exists in a training
sample. This is done by training class-wise classification net-
works with class-wise features, so each class has its classifier
and feature representation. CCDA [144] developed a different
method for the same aim. Instead of class-specific classifiers
like WDA, this approach utilizes two discriminator branches
to predict which classes are present in a particular patch using
binary classification loss and an adversarial loss. For the
target domain, the existing classes of a patch are predicted
using the pixel-wise thresholded pseudo-labels. This coarse
patch-level is accompanied by a fine-grained pixel-level dis-
criminator, reaching a multi-scale domain alignment.

d: ENTROPY-BASED
The output probability distribution’s entropy is a popular
uncertainty estimation tool. It is utilized for several UDA
approaches since it provides more information about the net-
work output than the maximum softmax prediction. Just like
maximum softmax-based self-training, entropy-based self-
training can be easily applied complementary to other UDA
methods [110], [194] and often used for adversarial learning
(see Section III-D2). One of the first works using entropy
information was ADVENT [211]. This approach employs
entropy minimization, which can be seen as entropy-based
self-training without a thresholding mechanism and, thus,
without one-hot encoded labels. FDA [69] followed a similar
idea and included a Charbonnier penalty weighting [216] for
the entropy minimization, which assigns a higher loss to high
entropy regions. Next, the entropy can replace the maximum
softmax value as the uncertainty measure and be utilized
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analogously with thresholding. Several works are employing
thismethodwith different thresholding techniques: Niemeijer
et al. [165] use a global quantile-based threshold, ESL [110]
and LSE+FL [193] both apply a class-based quantile-like
threshold for the entropy taking the most confident p% pixels
as pseudo-labels. CRA [194] employs a manually chosen
threshold which is halved for rare classes.

In contrast, other works avoid the usage of thresholds.
SEDA [146] does not utilize thresholding but takes the
inverse of the entropy values as weights for the unfiltered
target pseudo-labels. UncerDA [195] fits a Gaussian mixture
model to obtain a class-wise positive and negative distribu-
tion which is employed to assess if predictions are used as
pseudo-labels.

Two approaches aim to utilize the entropy by developing
new loss functions next to the entropyminimization described
previously. MSL [182] argues that the entropy minimization
is not optimal for rare classes due to a higher gradient for
higher probabilities. Consequently, the maximum squares
loss is introduced, where the loss is the square of the predicted
probabilities, which leads to a linearly increasing gradient and
makes both easy and hard classes better transferable since the
gradient grows not exponentially for easy classes. PTP [154]
also modifies the standard cross-entropy loss so that the loss
becomes symmetric, and very high predicted probabilities
are penalized for discouraging the network from overfitting.
BiMaL [196] introduces a new loss function that is a gener-
alized form of the entropy minimization of ADVENT [211].
The bijective maximum likelihood loss uses a sequence of
bijective mapping functions to map the segmentation output
to the latent space, where the log-likelihood loss is computed.
This approach should better capture image-level characteris-
tics than entropy minimization since not every pixel is treated
individually.

e: ENSEMBLE LEARNING
Ensemble learning is a commonly applied method for various
applications, e.g., uncertainty quantification [217]. Ensemble
learning refers to a group of methods where two or more
predictions of different DNNs or different (segmentation)
heads are included to obtain the final prediction. SAC [111]
proposes a classic ensemble learning method by training
two segmentation networks with correspondingly translated
source and target images. The predictions on the target image
are averaged and filtered by a softmax threshold to obtain
the pseudo-labels. The MRNet [199] method is different by
only using a second classifier head which takes features from
a different layer for weighted prediction summation. EPS-
UDA [200] employs three semantic segmentation heads with
a shared encoder but differs from other ensemble learning
methods in two ways. First, each head is trained with the out-
puts from the two other branches. The valid pseudo-labels are
only assigned when both outputs agree, making this the only
method where this hard constraint is employed instead of,
e.g., averaging. Second, the agreement between the heads is

measured using KL divergence and then used as a weighting
factor.

For UDA approaches, ensemble learning is often closely
connected to the group of multi-inference self-training meth-
ods, where different versions of one image are fed into the
network, and multiple predictions are combined to get a
more robust final prediction. These methods can be seen
as an extension of the standard ensemble learning methods
with Monte Carlo uncertainty estimation. In FDA [69], three
independently trained networks are utilized, and each net-
work receives differently style-transferred input images. The
predictions of all three networks are averaged, and an argmax
operation obtains the prediction. SIT [114]] follows a similar
scheme. However, instead, it uses a stochastic style transfer
(see Section III-B1.d) to vary the style of the translated
images and trains a triplet of networks with a large style
variety of the translated input images. One of these networks
is trained with ten different style transfers per image, which
can be seen as a Monte-Carlo-like uncertainty reduction by
averaging over the predictions. The outputs are averaged
across the three networks, and class-balanced self-training is
applied to further filter the pseudo-labels. DPL [106] employs
a similar method having a target and a source network. With
both target images and source style translated target images,
for the source network, two different predictions are obtained,
averaged like in FDA, and the known maximum softmax
thresholding is applied.

A crucial design choice for ensemble learning architec-
tures is the number of different networks or network heads.
STAR [218] introduced an alternative to a fixed number of
classifiers. Instead, the authors propose to model a distribu-
tion of classifiers as a multivariate Gaussian and randomly
sample the model weights from this learned distribution.
During training, the weights themselves are not optimized,
but the distribution parameters from which the weights are
then sampled. In practice, the method employs two different
classifiers, which should lead to similar results as training
with an infinite number of classifiers. It can therefore be seen
as a stochastic variant of CLAN [135].

Most methods do not explicitly estimate or utilize the
source and target domain shift. However, only a few works
aim to utilize the domain shift estimation for self-training.
The authors of CorDA [77] argue that depth prediction can
be used as a proxy for the actual domain shift estimation.
The target images are processed through a source and a target
depth prediction network, and the difference between these
predictions is computed. If the depth prediction difference is
high, the according pixel gets a lowweight in the self-training
loss assigned, and vice versa.

f: DISCRIMINATOR CONFIDENCE
Using discriminator confidence is a less popular self-training
method and is only possible adjacent to an adversarial learn-
ing framework. The underlying assumption of these works
is that those pixels where the discriminator has high con-
fidence are also good pseudo-labels. AL+ST [202] exploits
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a pixel-wise domain discriminator to use these outputs
as a confidence estimate for the target predictions. The
thresholding of the discriminator confidence values is the
same as the class-wise quantile-based softmax thresholding.
MADA [203] applies a very similar principle for its two
pixel-wise discriminator confidence maps but combines it
with the softmax probabilities, so only pixels where both
confidence estimates are above the threshold get qualified for
the pseudo-label.

DMLC [219] is significantly distinct from the other
self-training methods since it utilizes meta-learning for UDA.
It aims to correct wrong pseudo-labels with a noise transition
matrix (NTM). This matrix contains class transition probabil-
ities and is jointly optimized with the segmentation network
in a three-step scheme that includes a meta-optimization step.
In this step, the source data with a domain predictor is used
to serve as a so-called metadata set, estimate the network’s
generalization, and update the NTM accordingly.

2) ADVERSARIAL OUTPUT ADAPTATION
Adversarial output adaptation is one of the most often applied
methods in UDA research.

a: BASIC
It introduces the basic idea of attaching a discriminator after
the segmentation probability output and trains it to predict if
a certain prediction sample originates from a source or target
input on the image-level. A simple visualization of this idea is
shown in Figure 6 (top). By backpropagating this adversarial
loss, the segmentation networks should output similar seg-
mentation distributions for both the source and target domain
since the segmentation network will try to fool the discrimi-
nator with similar outputs. The target predictions will become
more similar to the source, and the network gets adapted to
the target domain. This principle also works for two different
discriminators as proposed byAdaptSegNet. One receives the
standard high-level softmax output, and the second discrimi-
nator ensures a low-level adaptation by getting segmentation
predictions only based on lower-level features. Several other
works employ adversarial output adaptation as proposed by
AdaptSegNet in addition to other methods [63], [79], [92],
[101], [102], [206]. Some approaches employ a reduced
adversarial learning method by leaving out the utilization of
low-level features [98], [142]. A minor change to the original
adversarial learningmethod is to replace the source input with
a style-transferred source image whose style is more similar
to the target domain [83], [94], [107]. Similarly, DPL [106]
uses two adversarial losses. One loss for translated source and
real target images and the second for translated target and real
source images. Another minor change to the original scheme
is proposed in UncerDA [195]. A sophisticated sampling
strategy for the source images in the adversarial adaptation
process is proposed to show rare or hard classes according to
their entropy uncertainty. Classes with high uncertainty are
shown more often and vice versa.

However, there are a lot of extensions and improve-
ments of this original adversarial method which can be clus-
tered as shown in Table 4. A straightforward extension is
multi-level adversarial learning, which distinctive character-
istic of AdaptSegNet is the utilization of features in multi-
ple different network layers for the adversarial adaptation.
Therefore, these works closely correlate to approaches oper-
ating in the feature space. SASP [49] applies two types of
adversarial adaptation. Next to the known output adversarial
learning, it concatenates multiple latent layers before sending
the concatenated result to a classification layer and applying
the adversarial loss. The authors reason that also the earlier
layers receive a strong learning signal from this multi-layer
fusion. MLAN [116] also proposes multi-level adversarial
adaptation but has a different argumentation and approach.
In global alignment, no local distributions can be adapted,
so MLAN introduces region-level adversarial learning where
relations between small patches are utilized to reach fine-
grained region-level adaptation. In addition to the connection
between local and global alignment, consistency maps on
multiple levels are calculated.

b: MULTI-DISCRIMINATOR
AdaptSegNet employs two discriminators for different levels
but with the same objective. A straightforward extension
is two discriminators with different objectives, as proposed
by MDD [202]. Here a second discriminator is trained to
distinguish between the source predictions and the source
ground truth. CADA [96] trains three different discrimina-
tors. They all align the source and target domain. However,
since two discriminators receive their prediction based on the
output of a feature attention mechanism, CADA can also be
seen in the group of multi-discriminator approaches. Next
to the standard discriminator, MAGD [63] proposes a gated
discriminator next to the standard discriminator that addition-
ally takes foreground-background segmentation masks as the
input since both areas have different adaptation difficulties.
The gated convolutions make it possible to utilize the masks
without hard thresholding, and the additional input for the
discriminator makes distribution alignment easier for fore-
and background.

The basic adversarial output adaptation does not dis-
tinguish between classes, so a group of works addresses
class-dependent adversarial learning. CCDA [144] introduces
two extensions to the adversarial adaptation from Adapt-
SegNet [204]. First, it has one coarse- and one fine-grained
branch enforcing adaptation at different levels of granularity.

c: CLASS-WISE ADVERSARIAL LEARNING
Second, a special focus lies on class-dependent adaptation,
and class-conditional loss functions are used. The adver-
sarial part of the coarse branch is trained to distinguish
the image-level class predictions of the two domains. The
pixel-wise predictions of the fine-grained branch to discrim-
inate between source and target domain are computed by a
class-conditional binary cross-entropy loss.
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SSF-DAN [132] computes class-wise semantic features by
separate convolutional layers for each class and calculates
the sum across all classes before computing the loss. SSF-
DAN introduces a pixel-wise weighting based on the softmax
prediction confidences to let the adversarial loss focus more
on difficult classes. CGDA [141] utilizes a so-called cross-
domain grouping network that performs clustering of the
segmentation output to better align the particular classes. The
discriminator receives an input conditioned on the learned
sub-clusters of the grouping network and, therefore, can bet-
ter learn to distinguish classes. FADA [140] proposes a sig-
nificantly different approach. Instead of only binary domain
labels, the discriminator is trained to output the entire soft-
max probability prediction from the segmentation network.
This additional knowledge is expected to enable a better
class-adaptive alignment since the same network predicts
class distribution and domain labels. CLS [191] employs a
similar method and proposes a shared classifier and discrim-
inator for better conditional alignment. The shared decoder
has one more output class in addition to the predefined
semantic classes to support the discriminator. CAA-Net [155]
follows a similar idea but applies class-wise masks to the
prediction maps so that the discriminator predicts a domain
label for each separate class map.

d: ENTROPY-BASED
Several approaches use entropy to replace the softmax pre-
dictions for adversarial training. ADVENT [211] was one
of the early works training the discriminator to distinguish
between domains based on the entropy maps of source and
target output probability maps. SCDS [209] slightly modifies
this method by using random patches for adversarial training
since they argue that the distribution of an entire image
differs too much. Some works simply integrate ADVENT
into their framework as an additional method [114], [210].
IntraDA [197] employs the same method and uses entropy
to split the target domain into hard and easy samples for an
adversarial intra-domain adaptation. SEDA [146] extends this
approach and introduces a weighting factor for the adver-
sarial loss based on the entropy of the images so that hard
samples with a high entropy can have a higher impact on
the loss. CRA [194] generates binary labels for confident
and non-confident regions based on entropy thresholding and
trains a discriminator to distinguish between these regions
within the target domain. In UncerDA [195], the entropy is
used to resample the input of the adversarial learning accord-
ing to the class-wise uncertainties on the target domain.

Next to the entropy, the basic softmax probability input
for the discriminators can also be replaced with other inputs
aiming for more meaningful alignment. ASANet [100] intro-
duces affinity maps for adversarial adaptation. These maps
are computed by also taking the predictions of adjacent pixels
into account and therefore enforcing the discriminator to
focus on the structural properties of the domains. As the
only work for semantic segmentation, APODA [198] uses
an adversarial attack to compute adversarial features and to

attack both the discriminator and the classifier. It trains the
attacked discriminator to output the same domain label for
both the clean and the perturbed prediction. DRP [137] com-
bines adversarial learning and patch-wise clustering. It trains
an additional network on the source domain to cluster output
patches and uses adversarial learning for alignment with the
source domain. MLAN [116] is mostly similar to that but
uses DBSCAN clustering [220] instead of training a separate
network for clustering.

Adversarial learning is usually employed between the
source and target domain for aligning the two different
domain distributions. However, a group of works aims
to obtain intra-domain alignment with adversarial learn-
ing, which means alignment between different distributions
within one of the domains. While this is technically no
domain adaptation, this group of methods helps to learn
target representations. IntraDA [197] combines both inter-
and intra-adaptation. First, the known entropy-based adver-
sarial alignment is applied, and second, the image-level
entropy is used to divide the target domain into easy and
difficult samples for adversarial training. PixIntraDA [208]
extends IntraDA to the pixel-level since they argue that the
image-level does not capture the local differences of the
prediction. However, no entropy is involved there, but simple
softmax thresholding is used to distinguish between easy
and hard samples. CRA [194] can be seen as a combination
of IntraDA and PixIntraDA since it combines entropy with
pixel-level adversarial learning. It also classifies so-called
trusted and untrusted regions of the target domain by their
corresponding entropy and trains a discriminator in an adver-
sarial manner to align both regions. This method should help
to transfer the knowledge from the well-segmented parts of
the target domain to the less-confident areas.

CSCL [142] focuses on separating transferable knowledge
as one of only a few works since the authors argue that
global adversarial adaptation may cause misleading knowl-
edge transfer. For that purpose, a transferability quantizer and
critic are introduced to distinguish between these different
types of knowledge. The critic is necessary to inform the
quantizer where the transferability estimates are not accurate.
The critic is trained using a reward based on how good the
segmentation predictions are.

Depth information as an additional modality is popular
in UDA research and adversarial output adaptation several
approaches make use of it. GGIO [90] is one of the simplest
combinations of depth and segmentation information. It con-
catenates the two predictions and provides this as the input to
the discriminator. DADA [207] includes the depth modality
in amore sophisticated way. It fuses the segmentation entropy
with the depth prediction as the element-wise product and
forwards the fused results to the discriminator. The discrim-
inator is trained to distinguish between the source and the
target domain. The authors argue that depth and geometric
information are similar between the domains and, therefore,
beneficial for better domain alignment. CTRL [149] fol-
lows a similar idea but on task-level. Depth prediction is
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incorporated here to improve the adaptation. A dedicated
cross-task relation layer is employed, where the entropy of the
semantic prediction, the semantics refinement head predic-
tion and the depth prediction are concatenated and forwarded
to the domain discriminator. The authors reason that an adver-
sarial adaptation on both semantic and depth entropy maps
makes the adaptation easier to difficult to transfer classes.

e: BI-CLASSIFIER
Maximum classifier discrepancy (MCD) [48], SWD [152],
and BCDM [151] belong to a group of adversarial methods
that are use two different classifiers instead of or in addi-
tion to a discriminator. These methods obtain an adversar-
ial alignment in the feature space, so a detailed description
is provided in Section III-C. However, there is a mutual
connection to the output space alignment because the out-
put discrepancy between their two classifiers is iteratively
maximized to construct the adversarial learning process. The
bi-classifier method proposed in CLAN [135] differs from
the previous settings. First, an additional discriminator is
employed after the two classifiers, receiving the summed
output, and the cosine similarity of the classifiers weights
the adversarial loss. The cosine similarity is used as the
discrepancy loss between the two classifiers. No alternating
optimization with the same loss function as in the three other
works is applied [48], [151], [152].

The growing research area of knowledge distilla-
tion/transfer is combined with adversarial domain adaptation
in the SE-GAN approach [107]. A student-teacher network
architecture with an exponential moving average update for
the student replaces the standard generator to stabilize the
adversarial training.

3) CONTRASTIVE OUTPUT ADAPTATION
Contrastive learning is mainly applied directly in the
feature space as described in Section III-C, but some
approaches exploit it for the output space. The basic prin-
ciple here is the same: the network is trained to output
similar representations for similar inputs or classes and vice
versa.

The approaches PWCL [162], CLST [159], SDCA [167],
RCCR [75], and UCDA [81] all have in common that the
contrastive adaptation operates in the feature space, and a
detailed description is provided in III-C2.b. However, to com-
pute positive and negative pairs, all access the output space to
obtain the pseudo-labels, which directly correlates to output
space alignment since reliable pseudo-labels are important
for the adaptation process.

This also applies to PLCA [163]but it is the only work
that conducts multi-level contrastive learning on both the
feature maps and the semantic predictions. For the latter one
in the output space, the authors choose a different metric
to compute the similarity and their positive pairs between
source and target prediction, namely the Kullback-Leibler
divergence.

4) CONSISTENCY OUTPUT ADAPTATION
The idea of consistency output adaptation is to enforce two or
more different network outputs to be similar using a dedicated
loss function. In UDA research, several approaches employ
consistency learning in the output space.

RPT [148] proposes an entire consistency framework com-
bining three different levels of consistency. For patch-wise
consistency, superpixels are computed, and all pixels within
these superpixels are enforced to have the same predicted
class. A similar strategy is conducted for cluster-wise con-
sistency, where the superpixels are grouped into clusters and
enforced to have the same predicted majority-voted class.
On top, an LSTM is used to enforce source and target to have
a similar spatial structure.

a: AUGMENTATIONS
It is a widely adopted method in consistency learning to use
two or more different style versions of the same image and
enforce the network to predict the same outputs since the
semantic content, i.e., the classes, are the same. Generally,
one can distinguish two ways to generate different versions
of the same image: rule-based like image augmentations and
learnable such as GANs and CycleGANs. SUDA [70] creates
two different spectral views of the same target images and
applies an L1 consistency loss to obtain similar predictions.
SVmin [192] utilizes the same loss for scale-invariance. The
target images are downscaled and enforced to be similar to
the original resolution’s prediction. LSE+FL [193] applies the
same but patch-wisewith a cross-entropy loss for consistency.
A popular and simple way are image augmentations which
can severely change image characteristics such as sharpness,
contrast, hue, etc. Similarly, PA+CCR [67] augments the
target images with color jitter and enforces the prediction to
be similar to the clean prediction. The standard cross-entropy
loss can be used since the clean prediction is treated as a
one-hot encoded pseudo-label that the augmented predic-
tion has to match. PixMatch [73] applies more sophisticated
and multiple different augmentations, including the discrete
Fourier transformation. The consistency loss (cf. PA+CCR)
is applied, making consistency learning and self-training
very similar in this setting. DACS [71] introduces cross-
domain image-level mixing and blurs the distinctive bound-
aries between consistency learning and self-training. The
training can be understood as both self-training on mixed
labels and consistency learning to predict the same classes
independently from added source content in the target image.

b: STYLE TRANSFER
Another line of work uses a GAN or CycleGAN to obtain
different image styles. SUIT [113] employs a GAN to transfer
source images to the target style and then enforces consis-
tency between style-transferred and real source images by
cross-entropy loss. SAC [111] follows a similar idea but
trains two distinct networks and enforces consistency using
an L2 loss. CrDoCo [47] is similar to this approach but uses a
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CycleGAN and two domain-specific networks to enforce the
output prediction consistency with a bi-directional KL diver-
gence. MSS [59] follows a similar approach but applies the
consistency loss for both the source and target domain and uti-
lizes the cross-entropy as the consistency loss. APODA [198]
employs a more sophisticated technique since the features are
perturbed with an adversarial attack, and an L2 loss enforces
the prediction of both the clean and the perturbed maps to be
the same.

c: KNOWLEDGE DISTILLATION
A popular and straightforward application of consistency
learning is knowledge distillation, where the knowledge
should be transferred from a teacher network to a student
network. SEAN [213] proposes a typical UDA knowledge
transfer framework. After being augmented, the target images
are processed by both a student and a teacher network, and
an L2 consistency loss enforces the two different target pre-
dictions to be similar. SE-GAN [107], TGCF-DA [85], and
BiSMAP [68] (with KL divergence consistency loss) follow
very similar methods. Augmentations and teacher-student
learning are expected to make consistency enforcement more
effective in this setting. UACR [82] extends this basic idea
with an uncertainty module and a second consistency loss.
Two uncertainty-weighted mean squared error losses (MSE)
are applied as the consistency loss to enforce student and
teacher to generate similar predictions. At the same time,
a class-wise mask is used to enforce consistency between
perturbed and non-perturbed images. Notably, these losses
are the only adaptation losses applied in this approach.
MRNet [199] is distinct from the other works since the
authors argue that a second additional classifier with a shared
encoder can also act as a teacher and regularize the main
model; the KL divergence loss is used to obtain output con-
sistency.

CAMix [76] uses the method from DACS and extends it
by knowledge transfer and a so-called significance mask.
This is computed based on the entropy of the target predic-
tion and a contextual mask using spatial similarities between
the source and target domain. The original domain mixture
idea from DACS is further extended by DSP [72]. It pastes
domain-specific content in both directions, so source and
target domain images are modified with content from the
other domain. The cross-entropy loss is a combination to
enforce both the source and the target content-based pre-
dictions to be consistent with the corresponding unmixed
labels. The clean predictions are obtained from the teacher,
and the mixed prediction from the student model, so it also
enforces consistency between these two models. SAC [115]
relies on strong image augmentations for the inputs for a
momentum network that is updated as a moving average of
the student network. In contrast to UACR, a single focal
loss enforces the consistency between the momentum and
segmentation network. Similar to UACR, predictions from
multiple crops are averaged to obtain more confident pseudo-
labels. BiSIDA [86] combines knowledge distillation and

style transfer. It processes the original target image and sev-
eral different style transferred images of that original image
through the network. The style transfer predictions are aver-
aged and utilized as the pseudo-label in the consistency loss.

ProDA [131] introduces two novel extensions worth men-
tioning. First, it initializes the student network with weights
from a self-supervised pre-training on ImageNet, which pro-
vides a strong bias towards diverse real-data representations.
Second, it performs multiple iterations of distillation, provid-
ing further performance improvement.

MFA [212] proposes the probablymost complexUDAcon-
sistency framework by combining two knowledge distillation
units each consisting of a teacher and a student, resulting in
four networks overall. However, the consistency mechanism,
embedded into the larger hybrid framework, is similar to other
works enforcing the student and teacher networks prediction
to be similar by optimizing for an L1 loss.
PIT [171] introduces a relaxed consistency loss between

the fine- and coarse-grained network branches. The known
L2 loss enforces the class activation maps of both branches to
be similar. However, learnable weights for the coarse branch
allow some adaptation between the branches and, therefore,
relaxation of the consistency condition. CDGA [99] shows
that consistent adaptation can also be conducted on the class
distributions predicted from an additional network, which are
enforced to be similar according to an L2 loss. In contrast
to the other works, ASAnet [100] enforces local region-wise
affinity consistencywithin the same image for both the source
and target domain. The goal is to obtain the same predicted
class for all pixels in a certain region except at the semantic
boundaries.

SAM [188] is the only work combining consistency and
a self-attention learning mechanism. A self-attention mod-
ule receives the segmentation output, and an L1 loss then
enforces the predicted output to be similar to two self-
attention maps. This should improve adaptation since the
attention maps enforce a focus on inter-pixel correlations.

5) DEPTH-BASED OUTPUT ADAPTATION
It is a straightforward idea to enrich the domain adaptation
process with additional or surrogate information to simplify
the adaptation process. A dominant modality is depth infor-
mation because of its close relation to the actual semantic
segmentation map and because it is possible to obtain ground
truth without human labeling effort. Since the output of the
depth estimation is mostly utilized, depth-enriched adapta-
tion can be seen as another category of output space adap-
tation. Depth-based adversarial output adaptation methods
were already described in Section III-D2.

SPIGAN [103] proposes a framework that may utilize mul-
tiple kinds of additional information from the source domain
but evaluates on depth data. It trains a second decoder (with
a shared encoder) network for depth estimation in the source
domain with an L1 loss. GUDA [168] builds upon a similar
architecture as SPIGAN, but extends it with new components.
Next to the depth estimation, the additional prediction of
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depth surface normals serves as a regularization for the depth
prediction task. More importantly, domain adaptation may
benefit in two ways from the depth information. First, via
the shared encoder, which additionally learns depth predic-
tion for the source domain. Second, via an image synthesis
task, where both the target depth prediction and the previous
frames are required to predict the target image.

DBST [130] is the only approach that incorporates
self-supervised depth estimation on the target domain to
obtain depth labels for this domain, which is different from
CorDA, where the depth is not used as a label in the target
domain. DBST contains two separable units that rely on
depth information. The first unit trains one network on the
depth labels in both domains and a second network on the
segmentation labels of the source domain. A transfer network
then predicts the semantic output from the depth network so
that the depth knowledge of the target is utilized for the seg-
mentation task. The second unit can be seen as a depth-guided
version of DACS [71]. The depth information is leveraged to
mix source and target content in a more meaningful way and
to generate a more diverse dataset for self-training.

6) OTHER METHODS
Next to the already described large methodological cluster
with many different proposed methods, there are a few works
in the line of UDA output space adaptation that cannot be
assigned to any previous clusters.

Clustering-based adaptation methods are often applied in
the feature space, as described in Section III-C. However,
CDGA [99] attaches an additional clustering network of two
convolutional layers directly after the semantic prediction
output. The clustering network is trained with two different
losses. One loss enforces class distribution clustering consis-
tency between source, and target and the second loss mini-
mizes a cosine similarity across the predicted clustered class
distributions. The original class distribution will be clustered
into a fixed number of sub-clusters strengthening the inter-
class adaptation.

The accurate segmentation along the boundaries between
objects is still a challenge for segmentation in general. Most
UDA works ignore the particular adaptation of object bound-
aries, but two approaches specifically aim to utilize the
boundaries for adaptation purposes.

BAPA-Net [74] builds upon DACS [71] and uses seman-
tic boundaries in two ways. First, it weighs the standard
cross-entropy loss by the distance of each pixel to the mixed
boundary of the source and target mixed image. This weight-
ing should enforce the network to focus on the domain mixed
boundaries. Second, the opposite strategy is applied for pro-
totype alignment in the feature space, and the mixed bound-
ary pixels are excluded to not confuse the prototype align-
ment. In contrast, SEDA [146] proposes an entire semantic
boundary prediction framework. A second network branch
is trained to predict the semantic boundaries in the source
domain, and a feature-level adversarial loss helps to obtain
accurate semantic boundary predictions in the target domain.

TABLE 5. Hybrid adaptation approaches employing techniques in
multiple adaptation spaces. The papers are clustered and sub-clustered
according to the employed adapation spaces.

An L1 consistency loss between the predicted boundaries of
the second network and the actual boundaries of the predicted
semantic segmentation map makes it possible to transfer the
knowledge of the boundary branch to the actual segmentation
branch.

E. HYBRID DOMAIN ADAPTATION
It became evident early in the research that methods of
the different adaptation spaces can be combined to increase
performance. A large group of research works has emerged
from this idea, and we refer to these approaches as hybrid
domain adaptation approaches. The complexity of different
approaches and ways to combine techniques is large. There-
fore, we provide a two-leveled grouping to ease the overview.
The first-level grouping is done according to the variations of
how the different spaces can be combined so that we obtain
four different fields, as shown in Table 5.

For the second level grouping, we introduce the terms
mutually independent and mutually dependent approaches.
Mutually independent describes approaches where the differ-
ent methods are combined independently so that the approach
would still work without one of the spaces. That, in turn,
means that the methods from the different spaces do not
directly rely on each other w.r.t. the information flow. A sim-
ple example would be, e.g., a style transfer method with mul-
tiple loss functions for input space alignment. To increase out-
put alignment, softmax-based self-training can be ‘‘attached’’
so that both techniques build a framework but are still
independent. Mutually dependent approaches combine tech-
niques that closely interact with each other and are directly
dependent on the other space, e.g., style transfer provides the
input for output consistency learning.
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The advantage of hybrid methods is that the performance
increase in the target domain is, in most cases, significant.
A detailed analysis of the performance capabilities of the
hybrid approaches will follow in Section V. A critical analy-
sis of the limitations and disadvantages of hybrid approaches
follows in Section VI as part of our meta-analysis.

1) INPUT AND FEATURE SPACE ADAPTATION
In this section we will discuss approaches that combine input
and feature space adaptation techniques. We will start with
with mutually independent followed by mutually dependent
approaches.

a: MUTUALLY INDEPENDENT APPROACHES
CyCADA [95] is one of the most popular approaches that
combines input and feature-level techniques in a mutually
independent manner. Next to a style transfer with a Cycle-
GAN, adversarial learning on the feature-level is applied.
The approach DLOW [31] works in the same way and only
extends the style transfer by a domainness factor for higher
style diversity. Closely related to that, GAM [143] utilizes
CycleGAN-transferred images for pre-training and indepen-
dently applies deep activation matching afterward. Likewise,
the idea of DACL [161] is similar but applies contrastive
learning in the feature space.

b: MUTUALLY DEPENDENT APPROACHES
LWC [45] combines input-level and feature-level adversarial
learning within one framework. However, both techniques
interact, and the feature-level adversarial learning is enabled
by the input style transfer forming a mutually dependent
approach.

ASM [84] is different because it utilizes an autoencoder-
based style transfer to generate mini-batches with different
stylized versions of the same image. This is necessary to
enforce feature consistency across the mini-batch.

2) INPUT AND OUTPUT SPACE ADAPTATION
In this section we will discuss approaches that combine input
and output space adaptation techniques. Again, we will start
with with mutually independent followed by mutually depen-
dent approaches.

a: MUTUALLY INDEPENDENT APPROACHES
APL [94] and DISE [92] are exemplary approaches for this
sub-cluster with a focus on input space adaptation. APL con-
sists of an input-level image reconstruction adaptation along
with self-training. DISE employs a complex input adaptation
module in combination with output space adversarial learn-
ing. Similarly, LTIR [79] first aims to learn texture-agnostic
representations by both domain-randomized and translated
images, followed by the second stage with adversarial learn-
ing and self-training. Unlike these approaches, PCEDA [93]
focuses on input and output adaptation by Fourier phase
consistent style transfer and an additional network to encode
the source segmentation priors in the output space.

A large group of approaches focuses on output space
adaptation and where the input space adaptation is added as
an independent sub-component. The three methods PixIn-
traDA [208], MAGD [63], andMLAN [116] have in common
that they focus on output-level adversarial learning but addi-
tionally utilize a Cycle-GAN-based style transfer to increase
the performance further. ASANet+ [100] focuses on output
space structure learning but includes a style transfer to show
the orthogonality of their method. In contrast to the other
approaches, SPIGAN [103] and GUDA [168] include depth
information in their adaptation methods, and both conduct
image-level alignment. Additionally, SPIGAN attaches an
adversarial-based technique to their multi-task depth and
segmentation network. Different from that, GUDA combines
depth prediction with a view synthesis module.

PTP [154] and CAA-Net [155] are distinct from the other
approaches by combining image reconstruction techniques
with output space methods. PTP is special since it utilizes the
so-called conservative loss in the output space.

b: MUTUALLY DEPENDENT APPROACHES
The mutually dependent combination of style transfer
and self-training closely relates to ensemble-like learning.
FDA [69], SAC [111], and SIT [114] all share the same
hybrid idea of generating multiple versions of the same image
using style transfer and training multiple networks to obtain
the pseudo labels. DPL [106] employs two networks to pro-
cess images in both translation directions. All three meth-
ods, style transfer, adversarial learning, and self-training, are
applied for both translation streams. This group of approaches
obtains a better-aligned input space and directly utilizes that
to increase the confidence of the pseudo labels for output
space alignment. In contrast to these approaches, the hybrid
idea of DACS [71] is more straightforward because it com-
putes pseudo labels only based on mixed images from both
domains. CVRN [66] and SUDA [70] both differ from the
other approaches since they focus on consistency between
different styles. CVRN combines inter-style and inter-task
regularization loss, and SUDA combines input adversarial
learning with a consistency loss for the different stylized
image versions.

Several other methods integrate style transfer, self-training
(or a different output space adaptation method), and adversar-
ial output learning into adaptation frameworks. SA-ITI [83]
combines these three methods, while BDL [98] has to be
highlighted because they propose a framework that utilizes
more interaction between the two spaces. The learned seg-
mentation model is utilized for the perceptual loss of the
translated images. The framework uses an iterative interac-
tion between input and output space next to self-training and
adversarial learning.

Another combination of input and output adaptation as a
mutually dependent framework is knowledge distillation with
a teacher and student network. TGCF-DA [85] proposes an
exemplary framework where the source images are translated
to a target-like style and used as input for the student network.
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UACR [82] and CAMix [76] follow a similar scheme, but
CAMix inputs domain-mixed images to the student network
instead of a style transfer. In contrast, BiSIDA [86] employs
style transfer in both directions; therefore, student and teacher
networks receive images from both domains with a shared
style.

3) FEATURE AND OUTPUT SPACE ADAPTATION
In this section we will discuss approaches that combine fea-
ture and output space adaptation techniques. Again, we will
start with with mutually independent followed by mutually
dependent approaches.

a: MUTUALLY INDEPENDENT APPROACHES
AdaptSegNet [204], SEDA [146],MLAN [116], CGDA [141],
and CrCDA [189] all utilize the adversarial learning for
distribution alignment in the output and the feature space.
Similarly, CLS [191] and DAST [139] combine the adver-
sarial alignment of distributions in the feature space with a
self-training method in the output space. This cluster contains
self-supervised learning techniques introduced in Section
III-C and self-training approaches described in Section III-
D. The approaches SSS+ST [165] and SePiCo [183] apply
contrastive clustering as described in III-C and self-training
in the output space. SWLS [53] falls in a similar category,
but they utilize an adversarial loss for output space alignment.
A common strategy formutually independent feature and out-
put space alignment is the utilization of feature-level adver-
sarial learning [204] in addition to another output technique.
Several approaches follow this idea. RPT [148] proposes
output patch consistency. SSDA [170] combines adversar-
ial learning with self-supervised pretext tasks. JAL [206]
adds a weight transfer, while CRA [194] is proposed as
an additional technique to any UDA method and can be
combined with adversarial learning. VAE-UDA [54] applies
an autoencoder-based output space alignment and adversarial
alignment. PFR [174] and SRDC [210] are slightly distinct
from these works because they utilize output adversarial
learning in combination with style minimization and feature
clustering, respectively. The authors of SEAN [213] instead
combine a self-attention mechanism in the feature space with
an output consistency loss.

The approaches DADA [207] and CTRL [149] apply an
implicit distribution alignment in the feature space by train-
ing depth regression on the source and target domain and
an adversarial alignment of the distributions in the output
space. Similarly, GUDA [168] and CorDA [77] utilize depth
regression as self-supervised training but use self-training in
the output space.

b: MUTUALLY DEPENDENT APPROACHES
The approaches MCD [48], SWD [152], and BCDM [151],
which utilize the maximum classifier discrepancy, fall into
this category and have a very close and crucial interaction
between feature and output space. Their three-step itera-
tive adversarial learning scheme (see Section III-C) works

because the feature extractor and two classifier heads are
updated alternatingly, so that feature- and output-alignment
directly support each other.

A crucial challenge for contrastive learning is the defini-
tion of semantically meaningful positive and negative pairs.
Often class information is accessed to guide the selection
of positive and negative pairs, which gives a close mutual
dependence between feature and output space. Different
approaches such as ProDA [131], CLST [159], SPCL [160],
and EPS-UDA [200] follow this principle. The actual adap-
tation happens in the feature space, but reliable pseudo labels
in the target domain are required, so both spaces are strongly
dependent. The additional application of self-training is
widespread.

Similar to this principle, another group of mutually depen-
dent approaches directly utilizes the feature prototypes or
anchors for assigning pseudo labels. This provides a strong
dependency of both spaces since the quality of pseudo labels
directly relies on the extracted prototypes. SCDA [167] is an
exemplary work for this, and also UCDA [81], CAM [166],
and CAG [214] utilize this idea.

The approach presented inMADA [203] presents an exam-
ple of mutual dependency between feature and output space.
The authors apply adversarial training at low-level and high-
level feature maps combined with self-training based on the
classifier and discriminator confidences. CSCL [142] utilizes
a more complex mutual interaction. Next to self-training
and adversarial learning, a critic function aims to distinguish
between domain-specific and domain-invariant knowledge
and closely interacts in the feature- and output space.

4) INPUT, FEATURE AND OUTPUT SPACE ADAPTATION
In this section we will discuss approaches that combine
techniques from all three adapation spaces (input, feature,
and output space). Again, we will start with with mutually
independent followed by mutually dependent approaches.

a: MUTUALLY DEPENDENT ADAPTATION
A notable pattern of mutually dependent adaptation is the
utilization of input space based domain mixing, i.e. content
from source images is pasted to target images and/or vice
versa. All three approaches RCCR [75], DAP [78] and BAPA-
Net [74] are building upon this mechanism that was initially
proposed by DACS; DISE-CT [104] also employs source
and target domain mixture. RCCR closely connects the three
spaces by processing themixed images with a student-teacher
framework and a consistency loss in the output space. The
latent features of the student and teacher network are used
for contrastive learning. BAPA-Net [74] instead uses the
domain mixture to enforce the boundary consistency on fea-
ture and pseudo label-level. DAP [78] has to be highlighted
in this context since it introduces a novel extension at the
intersection of feature and output space also including input
space alignment. As the only currently knownUDA approach
for semantic segmentation it introduces another modality by
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using word2vec embeddings [222] as domain invariant priors
and projects them together with the mixed semantic output
to enforce similarity between the priors and actual network
features.

Another group of mutually dependent approaches is
formed by CrDoCo [47] and MSS [59]. They both utilize
feature-level adversarial learning and then connect input and
output space by applying style transfer to compute consis-
tency loss between the predictions of the different stylized
images. DSP [72] and SSAC [115] are very similar because
they connect input and output space utilizing a teacher-
student framework. For DSP, the student network receives
domain mixed images, and a weighted CE-loss is computed
for both source and target mixed images in the output space.
Independently from this, a local and global MMD loss is
applied in the feature space. Similarly, SSAC applies aug-
mentations to obtain different versions of the same image.
Additionally, target BatchNorm adaptation is conducted inde-
pendently in the feature space.

Unlike from previously described works, another famil-
iar pattern of mutually independent approaches is the close
interaction between feature and output space. A popular rep-
resentative of this idea is SIM [101]. Feature and output
space are closely connected to compute class-wise feature
representations in the latent space and minimize the distance
between source and target features. Independently from that
input space adaptation following BDL and adversarial feature
adaptation is applied. DCAA [112] also has an independent
input adaptation module. However, the attention-based fea-
ture adaptation and self-training output adaptation interact
by using the attention weights for the pseudo labels and an
attention discriminator. BiSMAP [68] instead introduces a
novel utilization of the three adaptation spaces. First, a gaus-
sian mixture model in the feature space is used to assign
the pseudo labels, which are used to train a student-teacher
framework along with a consistency loss.

Distinct from the previous works, KATPAN [109] employs
three mostly independent domain adaptation modules in
input, feature, and output space. The feature adaptation mod-
ule has a connection to the style transfer module mak-
ing, KATPAN a mutually dependent approach. The feature
transferability information is used to weigh the style trans-
fer bottleneck and improve the input-level transfer of well-
transferable regions.

b: MUTUALLY INDEPENDENT ADAPTATION
Some works mainly vary in feature space adaptation methods
among these approaches. An exemplary approach for this
is CIR [108], where the style transfer with a CycleGAN
and adversarial discriminator acts independently from the
attention mechanism in the feature space and output-level
self-training. CADA [96] is very similar to that in the input
and output space; only the feature-level channel and spatial-
wise attention mechanism are different. The same applies
to MCSSF [105], which employs standard input and output
space methods but uses a cosine similarity-based feature

centroid alignment. WDA [23] shares the same underlying
idea with slightly different modules. It combines an attention
mechanism in the feature space with class-wise discrimina-
tors and image-level class existence prediction on the output
level.

There are two contrastive learning frameworks among
the mutually independent approaches. CFContra [87] and
PWCL [162] share the idea of embedding feature-based
contrastive learning methods into a larger framework with
style transfer. Both apply entropy minimization in the output
space. In PWCL, a patch-matching module is required to
compute positive and negative pairs, and self-training is con-
ducted. CorDA [77] and DBST [130] utilize domain mixture
techniques along with depth information in slightly different
ways. Building upon DACS, CorDA uses depth information
and a feature-level attention mechanism to enable knowledge
exchange between the depth and semantic stream, followed
by a depth disparity-based output alignment. DBST connects
the three spaces in a different mutually independent man-
ner because it first applies a feature-level transfer between
two networks before a depth-extended DACS version
is used.

In contrast to the other works, only the input space
alignment of PA+CCR [67] enforces inter-domain align-
ment by style transfer. The feature space centroid align-
ment and output space consistency alignment work inde-
pendently and only within the source and target domain,
respectively.

IV. VISION TRANSFORMER NETWORKS FOR UDA
This section will describe the novel and recently emerging
field of vision transformers.We aim to give the reader a better
intuition of why vision transformers show promising results
on domain adaptation benchmarks and why they could be an
exciting research direction for domain adaptation. For this
reason, we will first briefly overview this research field in
general and focus on the novel properties of these networks.
The following will review the existing UDA works utilizing
vision transformer networks.

Transformer networks with attention mechanisms were
initially developed for language processing [223]. Starting
with the foundational work from Dosovitskiy et al. with
ViT [224], the transformer networks recently gained much
attention in computer vision and showed promising results
on several benchmarks and applications [225]. For seman-
tic segmentation, several new architectures were developed,
e.g., Swin transformer [58], pyramid transformer [226], Seg-
Former [56], and recently HRViT [227].

The self-attention mechanism is the major change com-
pared to standard convolutional architectures such as the
ResNet versions. The self-attention mechanism, originating
from language processing, learns the relations between the
elements of a sequence of inputs and aims to capture how the
sequence element influence each other. In computer vision,
the input often is not a sequence but a single image. For this
reason, ViT [224] divides one image into image patches of
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16×16 pixels replacing the sequence known from language
processing. The self-attention mechanism learns the relations
between the image patches. SegFormer [56] uses smaller
4×4 patches for semantic segmentation.

Several works indicate that vision transformer networks
have higher robustness against perturbations and better
generalization capabilities than CNNs [228], [229], [230].
In contrast, Bai et al. [231] and Wang et al. [232] show
with their works that CNNs can achieve similar adversarial
robustness when transferring certain elements except for the
self-attention mechanism of vision transformer training to
CNNs. Also, the recently proposed ConvNeXt [233] outper-
forms vision transformer networks with modifications for a
CNN-based architecture, thereby questioning the superiority
of the vision transformers. That indicates that research for
vision transformers is still at its beginning, and more new
research findings can be expected. Next to these partially
contradicting results, there are some first findings on how
the learned representations from vision transformer networks
differ from CNNs and why that might impact their robustness
and generalization capabilities. The first difference is related
to the self-attention mechanism, which is supposed to learn
the relations between different patches. This causes a larger
receptive field [56] and enables the transformer networks to
incorporate more global contextual information at the early
layers [234], which might be one reason why occlusions
cause a smaller performance drop than for CNNs [229]. Sec-
ond CNNs are considered sensitive to texture [235], a crucial
problem in domain adaptation. In contrast to that and fol-
lowing the current research, vision transformers focus more
on the shape of objects, making them more robust to texture
shifts [229]. Third, Raghu et al. [234] observed that vision
transformer networks could better propagate location infor-
mation through the network than CNNs, which is a beneficial
property for localization tasks such as detection and segmen-
tation.

DAFormer [55] can be seen as the foundational work
with vision transformers for unsupervised domain adapta-
tion. It proposes novel contributions to both the method-
and architecture-level. This combination caused a major step
in the SOTA performance outperforming the previous best
approach ProDA [131], by more than 10 % mIoU. On the
architecture-level DAFormer builds upon SegFormer [56],
which is used as the encoder architecture. Two well-known
methods from the segmentation DNNs are utilized. First
DAFormer introduces skip-connections between the encoder
and decoder to transfer low-level knowledge better. It then
uses an ASPP-like [236] fusion where the stacked encoder
outputs from different levels are processed with different
dilation rates, which should further increase the receptive
field. On the method-level DAFormer partially adapts known
UDAmethods for CNNs. Self-training with a teacher-student
framework, strong augmentations, and softmax-based con-
fidence weighting is employed. In addition, rare class sam-
pling on the source domain and a feature distance loss to
the pre-trained ImageNet features are part of the DAFormer

approach. An interesting side observation is that learning rate
warm-up methods can be beneficial for UDA.

The second important vision transformer contribution and
current SOTA work HRDA [237] work directly builds upon
DAFormer. Its major contribution is a scale attention mech-
anism. The network receives two inputs; one high and one
low resolution input. The scale attention then learns to assign
attention scores that decide whether low- or high-resolution
input should get higher weighted. The idea behind that
method is that different classes and objects are easier to learn
on specific scales, and, e.g., contextual information can be
better extracted from smaller crops. Self-training is applied
using a slidingwindow to generate pseudo labels. This overall
further improves the DAFormer performance but still leaves
a performance gap.

TransDA [57] observes that the vision transformer can
have a so-called high-frequency problem. Using the Swin
Transformer [58] architecture, Liu et al. show that it generates
target pseudo labels and features that change more signifi-
cantly and with a higher frequency over the iterations than for
a ResNet-101. Therefore they argue that the high-frequency
problem only affects vision transformer networks. TransDA
proposes feature and pseudo label smoothing using a momen-
tum network to reduce the high-frequency flickering along
with self-training and weighted adversarial output adaptation.
This is similar to the teacher-student adaptation approaches
known for CNNs, as described in Section III-D4.

Next to these three approaches with methods tailored
explicitly for vision transformer networks, a rising number
of works evaluates on them. ProCST [238] follows the idea
of hybrid adaptation and applies style transfer in the input
space in addition toDAFormer [55] andHRDA [237]. Several
other works, which are already described in the previous sec-
tions, combine their methods with the DAFormer framework
and further improve the performance by small margins [76],
[183], [239], [240] but without beating HRDA. However,
CLUDA [239] also builds upon HRDA and further improves
this performance.

V. QUANTITATIVE COMPARISON OF UDA APPROACHES
After the extensive review of UDA techniques in the previous
section, we will conduct a large-scale performance analysis,
including all UDA approaches. Therefore, first, an overview
of the most common UDA performance metrics and tools is
given. Afterward, the comparison method is described, and
finally, new insights about the performance capabilities and
development are revealed.

A. PERFORMANCE METRICS AND TOOLS
The dominant quantitative evaluation metric is the mean
intersection over union mIoU =

TP
TP+FP+FN , with TP being

the true positive predicted pixels, FP the false positive, and
FN the false negative ones. It is a well-established metric for
semantic segmentation to quantify the segmentation quality
and is used by all included papers of our quantitative compar-
ison. Depending on the complexity of the specific approach,
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the mIoU is utilized to assess and compare the performance
of several different configurations. In addition, usually, the
class-wise IoUs are reported. That is important since not all
classes may benefit similarly from the adaptation, and the
class-wise IoUs allow a more fine-grained assessment.

Some works utilize a t-SNE [241] analysis, to visual-
ize domain alignment: [44], [154], [189], [208], [219] Our
analysis shows that it is the second most used method to
assess domain alignment, even though it is a qualitative
method and not a quantitative metric. T-SNE can visualize
high-dimensional feature distributions in the 2-dimensional
space by applying nonlinear dimensionality reduction [241].
With this technique, t-SNE is appropriate to visualize and
assess the aligned feature distribution of UDA approaches.
A typical change of the t-SNE plots after adaptation is a
better alignment of the target feature centroids with the source
centroids [189]. Next to this, most of the papers present
segmentation maps as a qualitative verification of the per-
formance of their approach. However, this can only serve to
highlight specific achievements exemplarily.

Next to these often applied methods, some metrics only
appear in single works like the t-test for comparison with
other approaches [109] or similarity and sparsity scores [44].

Overall it becomes clear that the set and variety of different
metrics are limited; namely, only mIoU for quantitative and
t-SNE for qualitative comparison are established, while only
the first one allows large-scale comparisons. That can hurt the
kind of findings researchers can draw from their evaluation.

B. QUANTITATIVE PERFORMANCE COMPARISON
1) METHOD
For our large-scale performance comparison across the UDA
segmentation approaches, we utilize the mIoU to measure the
segmentation performance. These values are reported by all
papers of the comparison and can therefore serve as a com-
parison metric. Cityscapes is the de-facto standard bench-
mark for the target domain. Other datasets like NTHU [38],
A2D2 [242], or BDD [243] would be valuable additional
evaluations for the real-to-real domain shift. However, their
appearance in the evaluations is too rare for a valid large-
scale comparison. The mIoU values which we are report-
ing in this survey are, in all cases, taken directly from the
original papers without any modifications, so no individual
experiments were conducted That means that differences in
the evaluation protocols of the different papers like resolution
etc. (as discussed in Section VI-A) can also have an impact
on the reported values. The best performance is reported in
the case of different reported performance values for different
configurations of the same approach.

For the comparison, both the performance and the improve-
ment over the source-only baseline are of interest, and we
provide both values for each paper if possible. In several
cases, the source-only performance of the approaches is not
reported. Therefore, it is impossible to provide values for the
improvement of these methods. For GTA5 and SYNTHIA

source-only training often, 36.6% and 38.6% mIoU, respec-
tively, are reported. However, we cannot assume these values
for all papers due to several possible modifications in the
source-only training. It has to be mentioned that this improve-
ment has to be carefully considered since weaker baselines
can cause a larger improvement while the performance is
still low. Another highly interesting performance assessment
for UDA approaches would be the performance gap to the
oracle performance, which means supervised training with
labels for the target domain. The number of papers reporting
this performance is also limited, so no valid comparison is
possible.

We present the performance comparison as a plot over time
with an assignment to input, feature, output, and hybrid space
adaptation. This makes the quantitative progress in UDA
research over the years directly observable and reveals new
insights about the capabilities of specific methods. For better
interaction and more detailed information, we also provide
the plots as interactive graphics on our project website with
links to the papers and more information. To obtain a fair
comparison w.r.t the time of publication, we took the earliest
publication date we found for each paper. Figure 7 shows the
performance, and Figure 8 shows the performance improve-
ment in % absolute for both GTA5 and SYNTHIA for the
VGG-16 and ResNet-101 backbone. As seen by the decreas-
ing number of data points for the VGG-16 backbone, more
recent works mainly utilize a ResNet-101 as the backbone.
However, we include the VGG-16 performance to verify
that the observations are valid for both backbones. Vision
transformer networks are not included in these plots because
they use a different architecture and would not contribute to
a fair comparison. Additionally, the number of approaches
using these architectures is still small and does not allow a
meaningful comparison yet.

2) META ANALYSIS
The first interesting observation we can draw from the
performance comparison is the performance limitation of
approaches that only adapt in the feature space. None crosses
the 50% mIoU line for GTA5 as the source and with a
ResNet-101 backbone. All other feature space approaches
reach a performance between 40-50 % mIoU. The observa-
tion for SYNTHIA is similar, where only one feature-based
approach exceeds the 50%mIoU target performance. The plot
showing the absolute improvement confirms this observa-
tion. Among the only feature-based approaches CaCo [164]
reports the best improvement of 12.6 % absolute for GTA5 as
the source and 15.0 % absolute for SYNTHIA as the source.
For GTA5 many approaches do not reach an improvement
of more than 20% absolute. These observations also hold for
the VGG-16 backbone, where only one of the feature-based
approaches reaches an improvement of more than 20% abso-
lute. The observation is, therefore, significant across both
datasets and architectures. This empirical observation could
indicate that aligning the synthetic and real distributions in
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FIGURE 7. Performance (mIoU (%)) on the Cityscapes validation set after training on the source domains GTA5 (top row) or SYNTHIA
(bottom row) with simultaneous adaptation to Cityscapes. The results are shown for models based on a ResNet-101 feature extractor (left
column) or a VGG-16 feature extractor (right column). The reported values are taken from the respective papers.

the feature space has a limit and cannot provide full alignment
standalone.

The observation flips for output and hybrid space adap-
tation approaches. Both significantly outperform the feature
space adaptation, particularly the hybrid approaches, which
are one of the most important reasons for the performance
increase and new SOTA performances in the past two years.
Remarkably, in 2022 all proposed approaches were hybrid
adaptation approaches, indicating their major importance
for UDA. In strong contrast, the pure input space adapta-
tion approaches, both quantitatively and qualitatively, play a
minor role, indicating that a standalone pixel-level adaptation
is insufficient to bridge the complete domain shift and provide
a large performance improvement. The best-performing input
space adaptation-only approach is DS [60], with 47.2%mIoU
with GTA5 as the source dataset even close to the feature-
space performance. The observed limitations intuitivelymake
sense since input space adaptation does not take aspects
like different label distributions, different semantic content,
or different geometry into account.

Pure output space adaptation approaches are significantly
more numerous than input and feature-space. However, sim-
ilar to the other spaces, we can observe a performance
boundary, also. For GTA5 and the ResNet-101 backbone
the highest mIoU is reached by UncerDA [195] with 52.6%
mIoU and the highest improvement with 16.7% absolute

by IAST [185]. However, in contrast to the other spaces,
several other approaches [140], [171], [186], [192] provide
improvements in a similar range like the two highlighted. For
both SYNTHIA and the VGG-16 backbone, a similar pattern
can be observed. Notably, for VGG-16, the improvements are
slightly higher with up to ≈ 20% absolute, but the number of
data points is limited.

We can observe that the hybrid approaches made it pos-
sible to cross the line of ≈ 15% absolute improvement in
mIoU for both GTA5 and SYNTHIA. In particular, hybrid
approaches clearly carried out the latest performance raise
within the last two years that exceeded the 60% mIoU per-
formance with GTA5. Before this development, between the
middle of 2019 and the end of 2020, for both SYNTHIA
and GTA5, we can see saturation in the performance where
most of the approaches remained close to the 50 % boundary
(slightly higher for SYNTHIA). At the beginning of 2021,
several better-performing hybrid works were published, end-
ing this saturation trend. No standalone method worth high-
lighting, but the combination of known methods from other
deep learning areas, like knowledge distillation, contrastive
learning, self-supervised learning, and self-training, led to
this increase in the SOTA performance. ProDA [131] used
and combined all these techniques, which obtained a new
SOTA performance of 57.5% mIoU and an improvement
of 20.9% absolute, outperforming previous approaches by a
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FIGURE 8. Performance improvement (mIoU (% absolute)) on the Cityscapes validation set after training on the source domains GTA5 (top
row) or SYNTHIA (bottom row) with simultaneous adaptation to Cityscapes. The results are shown for models based on a ResNet-101
feature extractor (left column) or a VGG-16 feature extractor (right column). The reported values are taken from the respective papers. Note
that not all papers provide a baseline performance without adaptation.

significant margin. Several other works [130], [188], [194]
attached additional methods to ProDA, leading to a rel-
atively high density of approaches close to 58% mIoU
but without providing significant methodical progress. The
same phenomenon can be observed for vision transformer
approaches where several works build upon HRDA [237]
or DAFormer [55]. Those approaches [239], [240], [244],
[245], [246] provide an additional improvement of 1-2%
absolute and reach up to 75.9% mIoU [247] with the cur-
rent SOTA approach masked image consistency (MIC). That
marks a ≈ 30% mIoU increase over the respective source-
only baseline. In comparison, the strongest reported improve-
ment of a hybrid approach using a ResNet-101 backbone is
30.6% absolute from DDB [248], but a significantly weaker
source-only baseline caused this large improvement. More
realistically, most of the recent approaches with a similar
or slightly weaker performance, compared to DDB, report
smaller improvements of 22.4% absolute [183], 22.5% abso-
lute [249], or 21.8% absolute [194]. This indicates that the
maximum improvement by UDA techniques for vision trans-
former networks is significantly larger than for ResNet-101-
based architectures.

These observations do not directly apply to the perfor-
mance with a VGG-16 backbone, where the performance
is clearly saturating since 2020. Notably, also newer hybrid
approaches do not reach new SOTA performance for this

setting. This does not contradict the ResNet-101 trend
because it is mainly caused by the fact that VGG-16 was
replaced as the standard architecture by the ResNet. There-
fore newer works either entirely leave the VGG-16 out or
may not perform such an extensive hyperparameter optimiza-
tion as for the ResNet-101. For 2022, none of the works
in the database reports their performance for the VGG-16
backbone.

Closely related to this is the observation that the per-
formance variance of the feature space approaches is
smaller than that of the hybrid space. Visually described,
the performance band of the feature space is narrower.
In contrast, the hybrid space shows a larger scattering
of the performances where we still observe works with
around 45% mIoU and high performers with over 60%.
That is reasonable since hybrid approaches can strongly
vary w.r.t. performance depending on the selection of
components That shows that strong performance is not
directly guaranteed but requires carefully selecting the hybrid
components.

VI. DISCUSSION
In this section, both the benchmarking settings in UDA and
the adaptation approaches themselves will be critically dis-
cussed. Based on this, this section will conclude with promis-
ing future research directions.
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A. BENCHMARK PROBLEMS
The task of unsupervised domain adaptation is defined
clearly. The entire training and validation process, on the
other hand, has been inconsistent so far. The following issues
are observed when comparing different methods for unsuper-
vised domain adaptation.

1) DATASET SPLITS
The SYNTHIA dataset does not provide an official split into a
training, validation, and test set. Therefore, the whole dataset
is usually used for training. Validation on the source domain
is not considered. For GTA5, there is an official split of the
dataset, but it is not used universally. Some publications train
solely on the training split, but others train on the entire
GTA5 dataset, i.e., on training, validation, and test set com-
bined. However, in both approaches, there is no validation
of the method on the source domain, contributing to the
next issue.

2) CHECKPOINT SELECTION
The training and adaptation process on the source and tar-
get domains typically takes several epochs, respectively up,
to roughly 250,000 iterations. During this lengthy training
and adaption process, almost all methods periodically save
checkpoints of the neural network on which an evaluation
is performed. The results using the checkpoint with the best
performance are then reported in the publication. This leads to
the following issues: First, the interval, in which checkpoint-
ing is performed, is not standardized. In some publications,
a checkpoint is saved every 2000 iterations [211], and in oth-
ers, every 2500 iterations [69]. Additionally, the total number
of iterations can differ from method to method. Secondly,
the validation for the checkpointing is often performed on
the validation set of the target domain (Cityscapes), which
is also used to report on in the publication. This means
that the validation, which is also used for hyperparameter
optimization and checkpointing, is used as a test set, which
goes against the basic guidelines of machine learning. There
are already some publications using a subset of the training
set for validation in order to use an unseen validation set as a
provisional test set [51], [115] or criticizing this and suggest-
ing to use the validation set for validation and the original test
set with the benchmark server for testing [115]. Furthermore,
the use of labeled target data for validation is, in our opin-
ion, essentially misleading, as it undermines the concept of
domain adaptation and misrepresents the actual performance
of the methods in real world applications. Suppose there
were labeled samples of the target domain. In that case,
these should be used for training since significantly better
results can be achieved with supervised multi-domain train-
ing than with an adaptation. Furthermore, checkpointing on
the target domain favors selecting models that perform signif-
icantly better on this domain. This can also lead to overfitting
the hyperparameters, as already described in Section VI-B
above.

3) TRAINING HYPERPARAMETERS
Another issue concerns the hyperparameters of training and
evaluation, which can significantly impact performance but
whose influence is often not adequately reported. One of the
factors is the resolution of the images from the source and
target domains that is adopted. For example, images from
GTA5 (source domain) are usually downsampled to 1280 px×
720 px, and Cityscapes images (target domain) are usually
downsampled to 1024 px×512 px during training. From here,
there are a wide variety of strategies that some papers have
followed but have not explicitly analyzed. Some papers use
the full images as their input [204], [211] and some papers use
image crops for parts of their training [115]. During the eval-
uation process on the target domain, most papers use the same
downsampled resolution as in training, but some methods use
less downsampled images, e.g., 1344 px×576 px [69]. Many
papers do not address the role of resolution and cropping
further, although reduced resolution, in particular, can affect
performance, especially for small structures. The different
choice of these hyperparameters also contributes to the next
point.

4) BASELINE PERFORMANCE
Another common issue is the lack of comparison with an
own source-only baseline. Many methods only compare their
adaptation performance with that of other methods. It is
ignored that the source-only performance can already pro-
vide substantially different performances, e.g., by a different
choice of hyperparameters and augmentations.

5) NON-DETERMINISM IN DL FRAMEWORKS
Most methods that provide code cannot be re-simulated per-
fectly due to non-determinism in deep learning frameworks,
e.g., PyTorch [250]. This is likely because either deterministic
convolutions algorithms are unavailable or take significantly
longer than non-deterministic ones. Therefore, for many
methods, the results may differ from the reported results. If no
code is published, this makes it even more complicated since,
for example, the choice of the random seed can also signifi-
cantly influence the final results. There are now publications
that address this problem by repeating their training several
times and reporting a mean value with the standard deviation
as their result [55].

B. METHODICAL REFLECTION
When analyzing the current state-of-the-art methods, one
can observe that the top-performing approaches tend to be
complex hybrid models. A few examples of such methods
are given with ProDA [131], DPL [106], and MFA [212].
ProDA [131] applies self supervised pre-training on image
net and is comprised of four training stages in which knowl-
edge distillation, symmetric cross-entropy, contrastive, and
adversarial loss functions are applied. DPL [106] combines
a warmup strategy with a cycle GAN for style transfer, and
it applies four segmentation losses and two adversarial losses
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for the final training. Finally,MFA [212] consists of two train-
ing stages, a warmup phase and a domain adaptation phase in
which co-learning is applied. In the latter, six self-training
losses are applied.

Recently Sakaridis et al. [39] showed thatmany approaches
that show good performance on the synthetic-to-real domain
shift struggle on real-to-real domain changes. The synthetic
to real domain change is exemplified through the adaptation
from either the SYNTHIA [37] or GTA5 [36] dataset to the
Cityscapes dataset [6]. The real-to-real domain change tested
in Sakaridis et al. [39] is the change from Cityscapes to
the ACDC dataset that contains diverse environment con-
ditions. There might be various reasons for the different
performance of the same domain adaptation approach on a
different domain adaptation benchmark. First, the approaches
are optimized for the benchmarked synthetic-to-real domain
shift, as a result of this introducing a bias in the selection
and development of new approaches toward this domain
change. Second, many approaches that are comprised of
many elements and hence bare a considerable amount of
complexity can be finetuned toward the given benchmarks
more easily by finding the optimal hyperparameters. Such
finetuning is done based on the labeled target domain vali-
dation set, hence introducing a dependency on target domain
supervision.

Connected to the issue of approach complexity is the topic
of training stability. Given that, in practice, often limited or
no validation data is given for the target domain, a training
process for domain adaptation should be robust against hyper-
parameter setting since no finetuning might be possible. This
touches on the issue of complexity but also the choice of tech-
nology. Adversarial training, e.g., is known to be very sensi-
tive to hyperparameter settings. Approaches like self-training
where a certain closeness of the source and target distribution
is assumed, might suffer when applied to strong domain
changes. A question especially relevant for the synthetic-
to-real-world domain change is whether domain adaptation
also introduces domain generalization to unknown real world
domains. Since the real world target domain is comprised
of a nearly infinite amount of subdomains, domain adapta-
tion to each of them is infeasible. Hence domain adaptation
approaches must introduce domain generalization to many
real world sub-domains. This topic is seldoml addressed in
the current unsupervised domain adaptation research.

Connected to this question is what information or knowl-
edge can be transferred by unsupervised domain adaptation
methods from the source to the target domain. Given, e.g.,
synthetic data of street scenes under rainy weather conditions,
are unsupervised domain adaptation approaches capable of
transferring the explicit knowledge about these scenes to
the real world? This question is seldom analyzed in current
research works. Domain adaptation approaches and papers
are optimized to increase the general mIoU metric on generic
domain changes such as from GTA5 to Cityscapes. We hence
suggest two improvements. On the one hand, analyzing what
kind of knowledge can be transferred requires datasets that

offer meta tags about subdomains. On the other hand more
sophisticated metrics than the mIoU are required.

Closely related is the question of how realistic the GTA5-
or SYNTHIA-to-Cityscapes domain change still is. Con-
sidering that current simulation engines can generate more
realistic data than the synthetic datasets GTA5 and SYN-
THIA, the task of unsupervised domain adaptation from
synthetic to real has changed. This probably influences the
methods that could be used, and we, therefore advocate the
creation of new benchmarks.

All UDA papers discussed in this survey deal with
closed-set adaptation (see Section II-A) meaning both source
and target domain have the same classes. However, for real
large-scale application, it is likely that the classes between
source and target are distinct, e.g., the target domain contains
the class ‘‘E-Scooter’’ while the source does not. The per-
formance of the researched closed-set UDA methods for this
setting is unclear. A stronger focus on open-set adaptation can
further simplify the application for real settings.

Training time and the number of iterations are rarely
addressed in most approaches. Since training is relatively
cheap for scenarios where the source and target domain are
comprised of small datasets this issue is of a lesser impor-
tance. Such scenarios are, e.g., given in the current scientific
benchmarks. In contrast, real autonomous driving datasets are
of a large scale and their size might increase even further
in the future. Hence this aspect is essential and should be
considered when judging a method.

So far, the presented benchmarks deal with adapting
large-scale models only applicable in real-time, given pow-
erful hardware. UDA approaches should consider presenting
a third knowledge distillation step showing how the learned
target domain model could be used to provide a real-time
capable model.

Finally, one of the most critical questions for unsupervised
domain adaptation is its relationship with semi-supervised
domain adaptation. Semi-supervised domain adaptation
might be an efficient trade-off between the cost of labeling
and the performance on the target domain. When looking
at the highly relevant synthetic-to-real domain change in
autonomous driving, we already showed that no UDAmethod
achieves equal or better performance than supervised training
on the target domain. Given that we can even achieve equal
or better performance by labeling only a few images of the
target domain, the question arises of where and when to
apply unsupervised domain adaptation compared to semi-
supervised methods.

C. FURTHER RESEARCH DIRECTIONS
In contrast to the recent performance progress, particu-
larly the step obtained by the vision transformer archi-
tectures, the domain performance gap is still significant.
Because oracle performance is mostly not reported, it is
impossible to accurately quantify that remaining gap. How-
ever, an estimate between ≈ 5-10 % mIoU for both CNN
and vision transformer architectures is realistic. This purely
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performance-based assessment and the previously discussed
issues show that the demand for research in domain-robust
deep neural networks is still great. The aspects which we
will discuss in the following as future research go beyond
the perspective of simply closing the performance gap for the
synthetic-to-real domain gap.

1) STANDARDIZATION OF EVALUATION
As described in Section VI-A, the current evaluation settings
are based on similar architectures and the same datasets.
However, they differ in several other aspects with an unclear
impact on the reported performance. That is not a clean scien-
tific standard and particularly questionable for comparisons
where less than one percent can be crucial for a new SOTA
performance. As a first step and necessary basis work for fur-
ther research, we highly suggest standardizing the evaluation
protocols.

Crucial points like the resolution, augmentations, architec-
ture, dataset split, reporting standard, and statistically valid
evaluation must be the same for all works and are easy to
standardize. Other points like checkpoint selection, how to
treat the labeled validation set, and a standard source training
setting instead might need to be the objective of a scientific
discussion to find a common standard.

2) METRICS AND DOMAIN SHIFT ANALYSIS
As shown in Section V-A, the variety of employed metrics or
assessment tools is limited, directly impacting the acquired
knowledge of the evaluations. More in-depth insights and
a better understanding of the actual underlying mechanism
within the network would further push the development of
methods. These may better address the occurring domain
shifts the more knowledge exists. One possible direction
could be the broader utilization of feature visualization
tools, e.g., t-SNE [241], to evaluate the alignment of the
two domains. Another option is to develop new metrics to
quantify the alignment in feature space. With this survey,
we would like to encourage researchers of future UDA works
to use a more diverse set of evaluation tools without dimin-
ishing the importance of performance-based metrics like
mIoU.

The major focus of UDA research in the past years was
reducing the performance gap. To the best of our knowledge,
no works so far focus on analyzing the network behavior
under domain shift. There are many important questions
only answered at maximum implicitly by existing works:
Which classes mostly affect the domain shift? Which fac-
tors (style, semantic content, class distribution) are most
difficult for domain alignment? How do different network
architectures respond under domain shift? Can we find a gen-
eral metric for network generalization capabilities? Focus-
ing more on understanding and analysis by answering these
questions could be a valuable contribution to future UDA
works.

3) NEW NETWORK ARCHITECTURES
As described, both VGG-16 and ResNet-101were the defacto
standard backbones used in UDA research for several years.
Vision transformer architectures recently gained attention in
UDA research and reached new SOTA performances (see
Section III-E4.b). The full potential of these architectures
now needs to be exploited after first works with promising
results. Therefore utilizing and researching vision transform-
ers as a new architecture type is one of the promising future
research trends. For researchers, we recommend including
vision transformer networks like DAFormer [55] in future
publications.

However, it remains unclear at the current point if vision
transformer networks will close the performance domain
gap and how strong they perform for other settings such
as domain generalization. For this reason another interest-
ing research direction can be the development of a real
next generation deep learning method with stronger and
more human-like generalization capabilities than the vision
transformer and more fundamental architectural changes as
it was suggested by Marcus et al. [251]. For this reason,
another interesting research direction can be developing a
real next-generation deep learning method with stronger and
more human-like generalization capabilities than the vision
transformer and more fundamental architectural changes,
as it was suggested by Marcus et al. [251]. The complex
hybrid methods show that CNNs, by default, do not have
strong generalization capabilities and therefore require much
effort and additional methods (see Section VI-B) to obtain
a better generalization or adaptation. This might be a strong
motivation to push research from the methodic to the archi-
tecture level to provide much better generalization capabil-
ities with a new generation of deep networks. This could
align with the research of other areas such as robustness
and adversarial stability that also may benefit from increased
generalization.

4) LARGE-SCALE DOMAIN ADAPTATION
There are no works that research large-scale unsupervised
domain adaptation, as would be the case for industrial appli-
cations. Instead, for example, a target dataset is utilized,
which is relatively old and contains a small number of
images, significantly smaller than more recent datasets like
A2D2 [242], which would be an exciting addition. The focus
of the works in this survey is clearly a scientific bench-
marking setting which is unquestionably necessary. However,
more research is necessary to use these algorithms for real
applications because the field of applicability of UDA algo-
rithms still needs to be completed. One step in this direction
can be open set domain adaptation as described in Section
II-A, where the target classes are distinct from the source
classes and which might be a common problem for indus-
trial applications across different countries. In Section VI-B,
we have shown that already small settings changes can lead
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to severe performance decreases, so research needs to exploit
how these algorithms can be transferred into real industrial
settings.

There is currently a strong focus in research on
camera-based domain adaptation, while some works tackle
domain adaptation for lidar sensors [252]. However, from
a recent point of knowledge, an entirely autonomous driv-
ing stack will come with some kind of sensor fusion that
combines the camera information with the inputs from other
sensors like LiDAR and RaDAR. To our knowledge, there are
currently no works covering the impact of the domain shift
on the system level, which means for the entire perception
system of an autonomous vehicle. Researching this question
and proposing new methods to tackle the domain shift on a
perception system level would be a promising and valuable
future research direction.

5) DOMAIN GENERALIZATION
Our survey focuses on unsupervised domain adaptation
where unlabeled data of the target domain is available to
perform adaptation. However, we must question how fea-
sible this setting is outside a fixed research context in a
large-scale industrial setting. The data collection might not
be the largest problem since an intelligent data collection
mechanism may help, depending on the application. Data
utilization for large-scale applications such as the automo-
tive industry can lead to severe problems. The pure num-
ber of domains a network needs to be adapted to will
cost a lot of effort in terms of computational and human
resources. Also the formal safety verification that the net-
works fulfill the safety standards in all domains can be
time-intensive. It is unlikely that the current generation of
DNNs, including vision transformers, can perform well on
a very large range of domains in parallel, even with good
adaptation.

For these reasons, domain generalization can be even more
promising as a future research direction because the adap-
tation step can be left out, making large-scale adaptation
easier under the assumption that strong generalization meth-
ods are available. This would have the major advantage that
the network does not need to be adapted to every single
domain, but we obtain a model that generalizes well across
all or most unknown domains. However, these methods are
still missing and could be a promising research direction for
their development. Since it is unclear if current models are
powerful enough for such learning strategies, this could be
connected to the research direction of novel architectures.

VII. CONCLUSION
In this work, we have given the most thorough review of
the highly relevant and fastly evolving field of unsupervised
domain adaptation for semantic segmentation. We have cat-
egorized and explained the ideas and methods of the vast
majority of approaches that were published in this field.
We have created a unique knowledge base that provides the
reader with a comprehensive overview of the field and an

extensive quantitative comparison of the approaches. There
was strong methodical progress over the past years in UDA
research, successively decreasing the domain gap. Hybrid
adaptation methods, a combination of multiple standalone
methods, can be highlighted as the currently most sophis-
ticated way for UDA and the carrier of the latest SOTA
performances. Recently also, vision transformer architectures
raised the SOTA performances into new dimensions.

However, the domain gap has yet to be closed. For this
reason, the scope and claim of this survey were not only the
categorization and the description of recent approaches but
also to analyze the current status of the research critically.
Following this idea, we pointed out several issues in UDA
research, like very complex approaches, bad generalization
to other settings, missing strict standards for benchmarking,
limited evaluation metrics, and more points.

Based on this critical analysis, we eventually recommend
promising future directions. Here we include aspects like new
common standards, new architectures, or an application for
real large-scale industrial settings. Going beyond the scope of
classic UDA research, we discuss new directions like system-
level adaptation, symbolic deep learning, and domain gen-
eralization. By doing so, we gave new impulses for domain
adaptation and believe to have facilitated research further.
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