Mansour, Islam and Papathanassiou, Konstantinos and Hänsch, Ronny and Hajnsek, Irena (2023) Combining AI Techniques with Physical Models: Forest Height Inversion from TanDEM-X InSAR Data Using a Hybrid Modeling Approach. In: BioGeoSAR Book of Abstracts. ESA BioGeoSAR Workshop, 2023-11-15 - 2023-11-17, Rome, Italy.
Full text not available from this repository.
Abstract
In the realm of artificial intelligence, specifically utilizing methodologies such as machine learning and deep learning, a conspicuous display of substantial potential across various parameter estimation problems has been demonstrated. However, such AI techniques are often employed without the incorporation of domain-specific knowledge or expertise, raising concerns about the explainability and robustness of the implemented methodologies. In contrast, physical models (PMs) offer a significantly enhanced level of deterministic robustness. However, it is imperative to recognize that these models can exhibit performance limitations owing to their inherent simplicity and/or strictness. Moreover, the accuracy of their inversion process is circumscribed by the assumptions and simplifications that underlie them, particularly those applied to the vertical reflectivity function, which are prerequisites for achieving a well-balanced inversion problem. As a result, it becomes imperative to advocate for hybrid modeling approach by the integration of AI techniques with physical models, especially in the context of forest height estimation derived from TanDEM-X coherence measurements. Accurate estimation of forest height is crucial for understanding forest structure and biomass, which in turn plays a pivotal role in climate change mitigation and ecosystem management. In this study, we propose a novel hybrid modeling approach that combines machine learning techniques and physical models to invert forest height from TanDEM-X InSAR (Interferometric Synthetic Aperture Radar) data. This approach might be relevant for the Biomass mission for understating the forest and its structures.
| Item URL in elib: | https://elib.dlr.de/198421/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
| Title: | Combining AI Techniques with Physical Models: Forest Height Inversion from TanDEM-X InSAR Data Using a Hybrid Modeling Approach | ||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||
| Date: | 15 September 2023 | ||||||||||||||||||||
| Journal or Publication Title: | BioGeoSAR Book of Abstracts | ||||||||||||||||||||
| Refereed publication: | Yes | ||||||||||||||||||||
| Open Access: | No | ||||||||||||||||||||
| Gold Open Access: | No | ||||||||||||||||||||
| In SCOPUS: | No | ||||||||||||||||||||
| In ISI Web of Science: | No | ||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||
| Keywords: | Forest height inversion, TanDEM-X InSAR data, hybrid modeling, machine learning, physical models, remote sensing. | ||||||||||||||||||||
| Event Title: | ESA BioGeoSAR Workshop | ||||||||||||||||||||
| Event Location: | Rome, Italy | ||||||||||||||||||||
| Event Type: | international Conference | ||||||||||||||||||||
| Event Start Date: | 15 November 2023 | ||||||||||||||||||||
| Event End Date: | 17 November 2023 | ||||||||||||||||||||
| Organizer: | ESA | ||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
| DLR - Research theme (Project): | R - TerraSAR/TanDEM, R - Polarimetric SAR Interferometry HR | ||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||
| Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > Radar Concepts | ||||||||||||||||||||
| Deposited By: | Mansour, Islam | ||||||||||||||||||||
| Deposited On: | 30 Oct 2023 17:09 | ||||||||||||||||||||
| Last Modified: | 24 Apr 2024 20:58 |
Repository Staff Only: item control page