elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Combining AI Techniques with Physical Models: Forest Height Inversion from TanDEM-X InSAR Data Using a Hybrid Modeling Approach

Mansour, Islam und Papathanassiou, Konstantinos und Hänsch, Ronny und Hajnsek, Irena (2023) Combining AI Techniques with Physical Models: Forest Height Inversion from TanDEM-X InSAR Data Using a Hybrid Modeling Approach. In: BioGeoSAR Book of Abstracts. ESA BioGeoSAR Workshop, 2023-11-15 - 2023-11-17, Rome, Italy.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

In the realm of artificial intelligence, specifically utilizing methodologies such as machine learning and deep learning, a conspicuous display of substantial potential across various parameter estimation problems has been demonstrated. However, such AI techniques are often employed without the incorporation of domain-specific knowledge or expertise, raising concerns about the explainability and robustness of the implemented methodologies. In contrast, physical models (PMs) offer a significantly enhanced level of deterministic robustness. However, it is imperative to recognize that these models can exhibit performance limitations owing to their inherent simplicity and/or strictness. Moreover, the accuracy of their inversion process is circumscribed by the assumptions and simplifications that underlie them, particularly those applied to the vertical reflectivity function, which are prerequisites for achieving a well-balanced inversion problem. As a result, it becomes imperative to advocate for hybrid modeling approach by the integration of AI techniques with physical models, especially in the context of forest height estimation derived from TanDEM-X coherence measurements. Accurate estimation of forest height is crucial for understanding forest structure and biomass, which in turn plays a pivotal role in climate change mitigation and ecosystem management. In this study, we propose a novel hybrid modeling approach that combines machine learning techniques and physical models to invert forest height from TanDEM-X InSAR (Interferometric Synthetic Aperture Radar) data. This approach might be relevant for the Biomass mission for understating the forest and its structures.

elib-URL des Eintrags:https://elib.dlr.de/198421/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Combining AI Techniques with Physical Models: Forest Height Inversion from TanDEM-X InSAR Data Using a Hybrid Modeling Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mansour, IslamIslam.Mansour (at) dlr.dehttps://orcid.org/0000-0003-3114-6515147880342
Papathanassiou, KonstantinosKostas.Papathanassiou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hänsch, RonnyRonny.Haensch (at) dlr.dehttps://orcid.org/0000-0002-2936-6765NICHT SPEZIFIZIERT
Hajnsek, IrenaIrena.Hajnsek (at) dlr.dehttps://orcid.org/0000-0002-0926-3283151081389
Datum:15 September 2023
Erschienen in:BioGeoSAR Book of Abstracts
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Forest height inversion, TanDEM-X InSAR data, hybrid modeling, machine learning, physical models, remote sensing.
Veranstaltungstitel:ESA BioGeoSAR Workshop
Veranstaltungsort:Rome, Italy
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:15 November 2023
Veranstaltungsende:17 November 2023
Veranstalter :ESA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - TerraSAR/TanDEM, R - Polarimetrische SAR-Interferometrie HR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > Radarkonzepte
Hinterlegt von: Mansour, Islam
Hinterlegt am:30 Okt 2023 17:09
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.