Sun, Yao and Kruspe, Anna and Meng, Liqiu and Tian, Yifan and Hoffmann, Eike Jens and Auer, Stefan and Zhu, Xiao Xiang (2023) Towards Large-Scale Building Attribute Mapping Using Crowdsourced Images: Scene Text Recognition on Flickr and Problems to be Solved. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, pp. 1-8. ISPRS Geospatial Week, 2023-09-02 - 2023-09-07, Cairo, Egypt. doi: 10.5194/isprs-archives-xlviii-1-w2-2023-225-2023. ISSN 1682-1750.
PDF
762kB |
Abstract
Crowdsourced platforms provide huge amounts of street-view images that contain valuable building information. This work addresses the challenges in applying Scene Text Recognition (STR) in crowdsourced street-view images for building attribute mapping. We use Flickr images, particularly examining texts on building facades. A Berlin Flickr dataset is created, and pre-trained STR models are used for text detection and recognition. Manual checking on a subset of STR-recognized images demonstrates high accuracy. We examined the correlation between STR results and building functions, and analysed instances where texts were recognized on residential buildings but not on commercial ones. Further investigation revealed significant challenges associated with this task, including small text regions in street-view images, the absence of ground truth labels, and mismatches in buildings in Flickr images and building footprints in OpenStreetMap (OSM). To develop city-wide mapping beyond urban hotspot locations, we suggest differentiating the scenarios where STR proves effective while developing appropriate algorithms or bringing in additional data for handling other cases. Furthermore, interdisciplinary collaboration should be undertaken to understand the motivation behind building photography and labeling. The STR-on-Flickr results are publicly available at https://github.com/ya0-sun/STR-Berlin.
Item URL in elib: | https://elib.dlr.de/195681/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||
Title: | Towards Large-Scale Building Attribute Mapping Using Crowdsourced Images: Scene Text Recognition on Flickr and Problems to be Solved | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | September 2023 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-xlviii-1-w2-2023-225-2023 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 1-8 | ||||||||||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Building Attributes, Scene Text Recognition (STR), Street-view Images, Flickr, Crowdsource, OpenStreet-Map (OSM), Building Function | ||||||||||||||||||||||||||||||||
Event Title: | ISPRS Geospatial Week | ||||||||||||||||||||||||||||||||
Event Location: | Cairo, Egypt | ||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||
Event Start Date: | 2 September 2023 | ||||||||||||||||||||||||||||||||
Event End Date: | 7 September 2023 | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Auer, Dr. Stefan | ||||||||||||||||||||||||||||||||
Deposited On: | 17 Nov 2023 12:45 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:56 |
Repository Staff Only: item control page