Prakash, Navya and Nieberl, Dorothea and Mayer, Monika and Schuster, Alfons (2023) Learning defects from aircraft NDT data. NDT and E International, 138. Elsevier. doi: 10.1016/j.ndteint.2023.102885. ISSN 0963-8695.
![]() |
PDF
- Published version
3MB |
Abstract
Non-destructive evaluation of aircraft production is optimised and digitalised with Industry 4.0. The aircraft structures produced using fibre metal laminate are traditionally inspected using water-coupled ultrasound scans and manually evaluated. This article proposes Machine Learning models to examine the defects in ultrasonic scans of A380 aircraft components. The proposed approach includes embedded image feature extraction methods and classifiers to learn defects in the scan images. The proposed algorithm is evaluated by benchmarking embedded classifiers and further promoted to research with an industry-based certification process. The HoG-Linear SVM classifier has outperformed SURF-Decision Fine Tree in detecting potential defects. The certification process uses the Probability of Detection function, substantiating that the HoG-Linear SVM classifier detects minor defects. The experimental trials prove that the proposed method will be helpful to examiners in the quality control and assurance of aircraft production, thus leading to significant contributions to non-destructive evaluation 4.0.
Item URL in elib: | https://elib.dlr.de/195514/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Learning defects from aircraft NDT data | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2 June 2023 | ||||||||||||||||||||
Journal or Publication Title: | NDT and E International | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 138 | ||||||||||||||||||||
DOI: | 10.1016/j.ndteint.2023.102885 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 0963-8695 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | NDT NDE 4.0 Aircraft production Quality control Machine learning POD | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Aeronautics | ||||||||||||||||||||
HGF - Program Themes: | Components and Systems | ||||||||||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||||||||||
DLR - Program: | L CS - Components and Systems | ||||||||||||||||||||
DLR - Research theme (Project): | L - Production Technologies | ||||||||||||||||||||
Location: | Augsburg | ||||||||||||||||||||
Institutes and Institutions: | Institute of Structures and Design > Automation and Production Technology | ||||||||||||||||||||
Deposited By: | Schuster, Dr.-Ing. Alfons | ||||||||||||||||||||
Deposited On: | 16 Jun 2023 10:26 | ||||||||||||||||||||
Last Modified: | 16 Jun 2023 10:26 |
Repository Staff Only: item control page