Hernandez-Hernandez, Hugo and Wang, Yi and Albrecht, Conrad M and Zhu, Xiao Xiang (2023) Masked Image Modelling for Representation Learning in Earth Observation. HelmholtzAI annual conference, June 12-14, 2023, DESY Hamburg, Germany.
![]() |
PDF
4MB |
Official URL: https://eventclass.it/haic2023/scientific/online-program/session?s=S-02a#e89
Abstract
Deep learning applied to Earth observation (EO) yields impressive results. However, a significant challenge in EO is the rapidly increasing data volume while limited annotation resources available. Self-supervised representation learning (SSL) employs large amounts of unlabeled data. Recently, Masked Image Modelling (MIM) demonstrated scalability in model and data size. MIM masks a defined ratio of the input image for training a model to predict the masked patches. The learnt encoder is transferred to downstream tasks. In this work, we explore a new approach of MIM for EO combining two state-of-the-art SSL methodologies. One employs the Masked Autoencoder (MAE), which asymmetrically masks and reconstructs the raw input with the aid of an encoder operating on the visible patches followed by a smaller decoder reconstructing. The second methodology utilizes the Masked Feature Prediction (MFP), where image feature descriptors get reconstructed. We test our approach on the SSL4E0-S12 dataset reconstructing Histogram Oriented Gradients (HOG). We evaluate the pre-trained model on a multi-class classification for EuroSAT. Experimental results indicate stable performance with more than 90% accuracy down to 10% of labeled data. An ablation study on data normalization reveals that linear classification downstream task accuracy benefits from normalization by up to 6%. In contrast, fine tuning accuracies are robust to data normalization.
Item URL in elib: | https://elib.dlr.de/195496/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Masked Image Modelling for Representation Learning in Earth Observation | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | self-supervised learning, masked image modelling, Sentinel-1, Sentinel-2, deep learning | ||||||||||||||||||||
Event Title: | HelmholtzAI annual conference | ||||||||||||||||||||
Event Location: | DESY Hamburg, Germany | ||||||||||||||||||||
Event Type: | national Conference | ||||||||||||||||||||
Event Dates: | June 12-14, 2023 | ||||||||||||||||||||
Organizer: | Helmholtz Association | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Albrecht, Conrad M | ||||||||||||||||||||
Deposited On: | 07 Jul 2023 08:21 | ||||||||||||||||||||
Last Modified: | 11 Jul 2023 16:58 |
Repository Staff Only: item control page