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Introduction



(Wang et al., 2022)

• SSL aims to learn by itself how 
to learn massive amount of data 

• Masked Image Modeling as part 
of SSL

1. Introduction | Background | Self-supervised learning
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Methodology



(He et al., 2021)

2. Methodology | MIM pre-training | Masked Autoencoders
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(Wei et al., 2021)

2. Methodology | MIM pre-training | Masked Feature Prediction
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2. Methodology | MIM pre-training | MAE + MFP
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Visualization of HOGRepresentation of gradients

(Satya Mallick, 2016)
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2. Methodology | MIM pre-training | Histogram Oriented Gradients
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Experiments



3. Experiments | EO datasets

SSL4EO-s12 EuroSAT

• 3 million Sentinel-2 and sentinel-1 
images

• 250k locations sampled 

• Patch scale 264x264 px

• Multi-spectral images over 13 
bands

• 27k labeled and georeferenced 
images

• Locations distributed all over 
Europe

• Patch scale 64x64 px

• Multi-spectral images over 13 bands
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Autoencoder
Pre-training 
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SSL4EO-s12

Weights Optimization Save weights

3. Experiments | Self-supervised pre-training

Classification 
Task

EuroSat

12



3. Experiments | Downstream Task
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3. Experiments | Ablation studies
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3. Experiments | Evaluation strategies

50%

• Labels variation

100 %
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• Supervised Learning

• Random Initialization
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Results



4. Results | SSL pre-training | Image reconstruction

a) b) c) d) e)
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4. Results | Downstream task | Classification accuracies
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4. Results | Downstream task | Evaluation strategies
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4. Results | Downstream task | Normalization
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4. Results | Downstream task | Masking ratio
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4. Results | Downstream task | Confusion Matrix 100%
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(a) (b) (c)

(e)(d)

4. Results | Downstream task | Misclassified images
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• Hybrid model performed in MSI remote sensing using SSL

• Classification accuracy surpasses state of the art, feature descriptors 
slightly improve performance

• Performance do not present a big improvement with respect pixelwise 
analysis

• Open possibility to explore new feature descriptors 

5. Conclusions and Outlook
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Thanks for your attention!
Hugo Hernández Hernández
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Appendix
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• Human annotated datasets are costly and time-consuming

• Earth observation deals with massive-scale datasets, self-supervised 
learning can address this issue 

Appendix | Motivation
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(Dosovitskiy et al., 2020)

Appendix | Vision Transformers
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(Gao et al., 2022)

Linear Classification Fine-tuning

Appendix | Downstream task
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(Dosovitskiy et al., 2020)



Appendix | Data preparation
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• 27k images
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Masking ratio Normalization

(Towards AI, 2020)

Appendix | Ablation study
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• A – RAW normalized
• B – RAW no normalized
• C – HOG normalized + hog-normalized

• D – HOG hog-normalized
• E – HOG  normalized
• F – HOG no normalized

Appendix | SSL pre-training | Training loss
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Appendix | Downstream task | Evaluation strategies
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Appendix | Downstream task | Normalization
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Appendix | Downstream task | Masking ratio



4. Results | Downstream task | Confusion Matrix 10%
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Appendix | Vision Transformer complete

(Dosovitskiy et al., 2020)
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(Wang et al., 2020)
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Definition of Loss Function

• The loss of our network measures the cost incurred from incorrect predictions

𝐿(𝑓 𝑥 𝑖 ,𝑊 , 𝑦(𝑖))

Predicted Actual

• Empirical Loss: Measures the total loss over our entire dataset

• Binary Cross Entropy Loss: Can be used with models that output a probability between 0 and 1

• Mean Squared Error Loss: Can e used with regression models that output continuous real numbers
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Training a Neural Network

• How can we use the loss function to train weights?

• We want to find the network weights that achieve the lowest loss

• We want to compute the lowest point and compute the gradient (iterative process)

[Amini, 2020]
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Computing Gradients: Backpropagation

• How much small change in w is going to affect our loss J

[Amini, 2020]

𝜕𝐽(𝑾)

𝜕𝑤1
=
𝜕𝐽(𝑾)

𝜕 ො𝑦
∗
𝜕 ො𝑦

𝜕𝑧1
∗
𝜕𝑧1
𝜕𝑤1

Repeat for every weight in the network using gradients from later layers
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Training loss

❑ Training a model means determining good values for all the weights and the bias from 

labeled examples

❑ Loss is the penalty for a bad prediction

❑ Loss is a number indicating how bad the model’s prediction was on a single example

❑ If the model’s prediction is perfect, the loss is zero, otherwise, the loss is greater

❑ Goal of training a model is to find a set of weights and biases that have loss, on average, 

across all examples

[Machine Learning Crash Course Google, 2020] 
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MAE encoder

MAE decoder

+ positional 
embedding

T. 
Block

Target



❑ Pretraining: MAE pre-training 

❑ Change of reconstruction targets:
MFP pre-training

Targets replacement MFP pre-training

Model Prediction



52(Vaswani et al., 2017)
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MAE+MFP 
encoder

MAE+MFP 
decoder+ positional 

embedding

T. 
Block

H
O
G
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(Satya Mallick, 2016)

Step 1: Preprocessing
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Step 2: Calculate the Gradient Images

𝑔 = 𝑔𝑥
2 + 𝑔𝑦

2 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑔𝑦

𝑔𝑥

(Satya Mallick, 2016)
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Step 3: Calculate Histogram of Gradients

(Satya Mallick, 2016)
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(Satya Mallick, 2016)
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(Satya Mallick, 2016)
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(Satya Mallick, 2016)



60(Satya Mallick, 2016)
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(Helber. P, et.al, 2015)



13 Bands covered by Sentinel’s 2 Multispectral band

(Helber. P, et.al, 2015)
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a)

b)

c)

d)

Normalization variation reconstruction
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Masking variation reconstruction
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80

(Alexander Amini, 2022)



81
(Ishan Misra, 2021)
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