Hernandez-Hernandez, Hugo und Wang, Yi und Albrecht, Conrad M und Zhu, Xiao Xiang (2023) Masked Image Modelling for Representation Learning in Earth Observation. HelmholtzAI annual conference, 2023-06-12 - 2023-06-14, DESY Hamburg, Germany.
PDF
4MB |
Offizielle URL: https://eventclass.it/haic2023/scientific/online-program/session?s=S-02a#e89
Kurzfassung
Deep learning applied to Earth observation (EO) yields impressive results. However, a significant challenge in EO is the rapidly increasing data volume while limited annotation resources available. Self-supervised representation learning (SSL) employs large amounts of unlabeled data. Recently, Masked Image Modelling (MIM) demonstrated scalability in model and data size. MIM masks a defined ratio of the input image for training a model to predict the masked patches. The learnt encoder is transferred to downstream tasks. In this work, we explore a new approach of MIM for EO combining two state-of-the-art SSL methodologies. One employs the Masked Autoencoder (MAE), which asymmetrically masks and reconstructs the raw input with the aid of an encoder operating on the visible patches followed by a smaller decoder reconstructing. The second methodology utilizes the Masked Feature Prediction (MFP), where image feature descriptors get reconstructed. We test our approach on the SSL4E0-S12 dataset reconstructing Histogram Oriented Gradients (HOG). We evaluate the pre-trained model on a multi-class classification for EuroSAT. Experimental results indicate stable performance with more than 90% accuracy down to 10% of labeled data. An ablation study on data normalization reveals that linear classification downstream task accuracy benefits from normalization by up to 6%. In contrast, fine tuning accuracies are robust to data normalization.
elib-URL des Eintrags: | https://elib.dlr.de/195496/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Masked Image Modelling for Representation Learning in Earth Observation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | self-supervised learning, masked image modelling, Sentinel-1, Sentinel-2, deep learning | ||||||||||||||||||||
Veranstaltungstitel: | HelmholtzAI annual conference | ||||||||||||||||||||
Veranstaltungsort: | DESY Hamburg, Germany | ||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 12 Juni 2023 | ||||||||||||||||||||
Veranstaltungsende: | 14 Juni 2023 | ||||||||||||||||||||
Veranstalter : | Helmholtz Association | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||||||
Hinterlegt am: | 07 Jul 2023 08:21 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags