Schnaus, Dominik and Lee, Jongseok and Cremers, Daniel and Triebel, Rudolph (2023) Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks. In: 40th International Conference on Machine Learning, ICML 2023. Fortieth International Conference on Machine Learning, 2023-07-23 - 2023-07-29, Hawaii. ISSN 2640-3498.
PDF
1MB |
Official URL: https://proceedings.mlr.press/v202/schnaus23a.html
Abstract
In this work, we propose a novel prior learning method for advancing generalization and uncertainty estimation in deep neural networks. The key idea is to exploit scalable and structured posteriors of neural networks as informative priors with generalization guarantees. Our learned priors provide expressive probabilistic representations at large scale, like Bayesian counterparts of pre-trained models on ImageNet, and further produce non-vacuous generalization bounds. We also extend this idea to a continual learning framework, where the favorable properties of our priors are desirable. Major enablers are our technical contributions: (1) the sums-of-Kronecker-product computations, and (2) the derivations and optimizations of tractable objectives that lead to improved generalization bounds. Empirically, we exhaustively show the effectiveness of this method for uncertainty estimation and generalization.
Item URL in elib: | https://elib.dlr.de/195286/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Learning Expressive Priors for Generalization and Uncertainty Estimation in Neural Networks | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2023 | ||||||||||||||||||||
Journal or Publication Title: | 40th International Conference on Machine Learning, ICML 2023 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
ISSN: | 2640-3498 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Bayesian Deep Learning, Uncertainty in Deep Learning | ||||||||||||||||||||
Event Title: | Fortieth International Conference on Machine Learning | ||||||||||||||||||||
Event Location: | Hawaii | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 23 July 2023 | ||||||||||||||||||||
Event End Date: | 29 July 2023 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Explainable Robotic AI | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||
Deposited By: | Lee, Jongseok | ||||||||||||||||||||
Deposited On: | 13 Jun 2023 11:55 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:55 |
Repository Staff Only: item control page