Müller, Marcus Gerhard and Durner, Maximilian and Boerdijk, Wout and Blum, Hermann and Gawel, Abel and Stürzl, Wolfgang and Siegwart, Roland and Triebel, Rudolph (2023) Uncertainty Estimation for Planetary Robotic Terrain Segmentation. In: 2023 IEEE Aerospace Conference, AERO 2023, pp. 1-8. IEEE. 2023 IEEE Aerospace Conference, 2023-03-04 - 2023-03-11, Big Sky, Montana, US. doi: 10.1109/AERO55745.2023.10115611. ISBN 978-166549032-0. ISSN 1095-323X.
PDF
14MB |
Official URL: https://ieeexplore.ieee.org/document/10115611
Abstract
Terrain Segmentation information is crucial input for current and future planetary robotic missions. Labeling training data for terrain segmentation is a difficult task and can often cause semantic ambiguity. As a result, large portion of an image usually remains unlabeled. Therefore, it is difficult to evaluate network performance on such regions. Worse is the problem of using such a network for inference, since the quality of predictions cannot be guaranteed if trained with a standard semantic segmentation network. This can be very dangerous for real autonomous robotic missions since the network could predict any of the classes in a particular region, and the robot does not know how much of the prediction to trust. To overcome this issue, we investigate the benefits of uncertainty estimation for terrain segmentation. Knowing how certain the network is about its prediction is an important element for a robust autonomous navigation. In this paper, we present neural networks, which not only give a terrain segmentation prediction, but also an uncertainty estimation. We compare the different methods on the publicly released real world Mars data from the MSL mission.
Item URL in elib: | https://elib.dlr.de/195140/ | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||||||
Title: | Uncertainty Estimation for Planetary Robotic Terrain Segmentation | ||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||
Date: | 15 May 2023 | ||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | 2023 IEEE Aerospace Conference, AERO 2023 | ||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||
DOI: | 10.1109/AERO55745.2023.10115611 | ||||||||||||||||||||||||||||||||||||
Page Range: | pp. 1-8 | ||||||||||||||||||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||||||||||||||||||
ISSN: | 1095-323X | ||||||||||||||||||||||||||||||||||||
ISBN: | 978-166549032-0 | ||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||
Keywords: | Planetary exploration rover, Mars Moons eXploration, semantic segmentation, uncertainty estimation, deep learning, machine learning, terrain segmentation | ||||||||||||||||||||||||||||||||||||
Event Title: | 2023 IEEE Aerospace Conference | ||||||||||||||||||||||||||||||||||||
Event Location: | Big Sky, Montana, US | ||||||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||||||
Event Start Date: | 4 March 2023 | ||||||||||||||||||||||||||||||||||||
Event End Date: | 11 March 2023 | ||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Multisensory World Modelling (RM) [RO] | ||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||||||||||||||||||||||
Deposited By: | Müller, Marcus Gerhard | ||||||||||||||||||||||||||||||||||||
Deposited On: | 16 May 2023 20:04 | ||||||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:55 |
Repository Staff Only: item control page