Eiband, Thomas and Liebl, Johanna and Willibald, Christoph and Lee, Dongheui (2023) Online task segmentation by merging symbolic and data-driven skill recognition during kinesthetic teaching. Robotics and Autonomous Systems, 162, p. 104367. Elsevier. doi: 10.1016/j.robot.2023.104367. ISSN 0921-8890.
PDF
- Published version
2MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0921889023000064
Abstract
Programming by Demonstration (PbD) is used to transfer a task from a human teacher to a robot, where it is of high interest to understand the underlying structure of what has been demonstrated. Such a demonstrated task can be represented as a sequence of so-called actions or skills. This work focuses on the recognition part of the task transfer. We propose a framework that recognizes skills online during a kinesthetic demonstration by means of position and force-torque (wrench) sensing. Therefore, our framework works independently of visual perception. The recognized skill sequence constitutes a task representation that lets the user intuitively understand what the robot has learned. The skill recognition algorithm combines symbolic skill segmentation, which makes use of pre- and post-conditions, and data-driven prediction, which uses support vector machines for skill classification. This combines the advantages of both techniques, which is inexpensive evaluation of symbols and usage of data-driven classification of complex observations. The framework is thus able to detect a larger variety of skills, such as manipulation and force-based skills that can be used in assembly tasks. The applicability of our framework is proven in a user study that achieves a 96% accuracy in the online skill recognition capabilities and highlights the benefits of the generated task representation in comparison to a baseline representation. The results show that the task load could be reduced, trust and explainability could be increased, and, that the users were able to debug the robot program using the generated task representation.
Item URL in elib: | https://elib.dlr.de/194567/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Online task segmentation by merging symbolic and data-driven skill recognition during kinesthetic teaching | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 20 January 2023 | ||||||||||||||||||||
Journal or Publication Title: | Robotics and Autonomous Systems | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 162 | ||||||||||||||||||||
DOI: | 10.1016/j.robot.2023.104367 | ||||||||||||||||||||
Page Range: | p. 104367 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 0921-8890 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Learning from demonstration Programming by demonstration Robot Symbolic Subsymbolic Data-driven Task segmentation Action segmentation Skill recognition Task representation Interactive robot programming Intuitive robot programming Force-based Tactile Online segmentation Kinesthetic teaching | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||||||
DLR - Research theme (Project): | R - Autonomous learning robots [RO] | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Management | ||||||||||||||||||||
Deposited By: | Geyer, Günther | ||||||||||||||||||||
Deposited On: | 31 Mar 2023 12:11 | ||||||||||||||||||||
Last Modified: | 26 Mar 2024 13:13 |
Repository Staff Only: item control page