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a b s t r a c t

Programming by Demonstration (PbD) is used to transfer a task from a human teacher to a robot,
where it is of high interest to understand the underlying structure of what has been demonstrated.
Such a demonstrated task can be represented as a sequence of so-called actions or skills. This work
focuses on the recognition part of the task transfer. We propose a framework that recognizes skills
online during a kinesthetic demonstration by means of position and force–torque (wrench) sensing.
Therefore, our framework works independently of visual perception. The recognized skill sequence
constitutes a task representation that lets the user intuitively understand what the robot has learned.
The skill recognition algorithm combines symbolic skill segmentation, which makes use of pre- and
post-conditions, and data-driven prediction, which uses support vector machines for skill classification.
This combines the advantages of both techniques, which is inexpensive evaluation of symbols and
usage of data-driven classification of complex observations. The framework is thus able to detect a
larger variety of skills, such as manipulation and force-based skills that can be used in assembly tasks.
The applicability of our framework is proven in a user study that achieves a 96% accuracy in the
online skill recognition capabilities and highlights the benefits of the generated task representation in
comparison to a baseline representation. The results show that the task load could be reduced, trust
and explainability could be increased, and, that the users were able to debug the robot program using
the generated task representation.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Recent years have shown a shift in the production cycle from
arge product batches to small ones, as the demand for cus-
omized products grows [1]. At the same time, automation of the
roduction cycle has become a major goal for many companies, as
obots become more versatile and cheaper, and their use becomes
ttractive in labor-intensive production chains. These two trends
ombined lead to the demand of robots that learn new tasks
uickly and efficiently in order to keep up with the changing
roduction cycle. The traditional form of robot programming
tands in the way of this change, as people working in production
ften lack the background and also the time to implement these
hanges themselves, and experts must provide the code instead.
Therefore, methods that allow teaching robots new tasks with-

ut having to implement code have become a much researched
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921-8890/© 2023 The Authors. Published by Elsevier B.V. This is an open access art
topic. Programming by Demonstration (PbD) is one of these ap-
proaches, which allows the teacher to demonstrate new behav-
iors that the robot learns through imitation. As this is similar
to the way humans teach one another, it is intuitive to use and
requires no background knowledge in robotics or traditional pro-
gramming [2]. While PbD allows non-experts to program robots,
it sill does not mean that all human demonstrators are good
teachers. The demonstrations non-experts give to machines are
often sub-optimal [3], which stems from a mismatch of the men-
tal model the users have of the robot and the robot’s real knowl-
edge [4]. To improve the user’s teaching capability by resolving
this mismatch, it is helpful to provide the user with feedback
about what the robot has learned [5]. Furthermore, an under-
standable representation of the robot’s knowledge is an essential
part of giving a robot the ability to explain itself. This helps to
build trust in robots, which is necessary to make non-experts feel
at ease when using robots and gives them the insight necessary
to debug incorrect robot programs [6].

Therefore, we propose a skill recognition technique that helps
users to understand what a robot has learned from a demon-
stration. We define skill recognition as a technique to segment a
task into a sequence of meaningful, understandable steps that are
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. An overview of the information flow in our framework. The user
provides a demonstration, which is segmented by the system to recognize
appropriate robot skills. At the same time, the user can monitor the evolving
task representation, which can be edited at any time.

represented as robot skills. This is achieved by solving a segmen-
tation and identification problem simultaneously. We introduce
a combination of symbolic and data-driven skill recognition to
extract a rich task representation consisting of manipulation skills
as well as force-based skills. This combination is proposed to
overcome the limitations of existing approaches that use only
one of the techniques. The overview of our approach is shown
in Fig. 1, where the human is in the loop as a teacher and able to
monitor the robot’s understanding of the task.

Many existing works represent a demonstrated task in the
orm of a sequence of actions. In the literature, these are also
nown as activities, planning operators, subtasks, and skills. We
tick to the term skills, as defined in [7], which are a meaningful
epresentation in industrial use cases. We divide the state of the
rt of skill recognition in two major categories, based on their
ecognition methodology. On the one hand, we see approaches
hat make use of symbolic action descriptions as well as pre-
nd post-conditions to recognize skills from a demonstration. On
he other hand, we see data-driven approaches that detect skills
ased on a trained model, which requires a dataset of previously
een skills. Both categories have their advantages, which are best
nderstood in the following example of kinesthetic teaching. As-
ume that the end user opens the robot’s gripper during the task
emonstration. This event can be easily described on a symbolic
evel, for instance evaluating if the symbol gripperOpen is true
r false. Such events help to build preconditions for robotic skills
uch as open-gripper or place
Using a symbolic approach here is straightforward, since the

nderlying conditions can be easily designed, implemented, and
valuated with minimal cost and with high accuracy. Training a
lassifier on opened and closed gripper states would be compu-
ationally inefficient. Assume now that the user moves the robot
ool along a surface while applying force onto the plane. This
esults in a time-series of measurements that can be hardly de-
cribed by manually designed rules. Therefore, a trained classifier
s a good choice to recognize an appropriate skill for this phase
f the demonstration.

.1. Symbolic approach

In a symbolic approach, names are assigned to specific robot
tates in order to define the meaning of represented knowledge.
hese names are called symbols, which can be used to form
redicates in order to evaluate a skill’s pre- or post-condition.

ased on a survey about robot knowledge representations [8],

2

well-known syntax to define these conditions is the Planning
omain Definition Language (PDDL) [9]. These conditions can be
valuated during demonstration in order to identify a skill that
atches them. We call this the symbolic approach of recognizing
skill from a demonstration. An overview of the state of the art

or the understanding of human movements can be found in [10],
hich focuses on the semantic aspects of recognition algorithms.
The action recognition system presented in [11,12] used a so-

alled ‘‘predicator’’ that produces a symbolic description of the
cene based on visual perception. A definition of a robot skill
n an industrial setup is given by [7], describing potential skill
rchitectures with pre- and post-condition checks. Here, the skill
equence comprising a task is programmed manually and later
arameterized. In comparison, we recognize the skill type itself
n the fly instead of only parameterizing it.
In the motion-sensor PbD approach used in [13], each skill

as a set of unique postconditions. These postconditions describe
he effects which the skill has on the robot’s state as well as on
he environment. Other approaches additionally make use of pre-
onditions, describing which conditions need to be fulfilled before
r during the skill, such as [14]. Here, skills were described in the
lanning Domain Definition Language (PDDL). To check if their
onditions are fulfilled, a world model was used, providing the
ositions of all relevant objects in the workspace, as well as the
obot’s state. Since such a model can diverge from the real world
nd lead to incorrect skill recognition, [15] used image detection
o evaluate which conditions are fulfilled. It introduces Object–
ction–Complexes (OACs), where the conditions of skills describe
ontact changes between objects.
A drawback of pure symbolic segmentation methods can be

hat pre- and post-conditions of each skill need to be designed
y hand. This can make it difficult to find distinguishing sym-
olic expressions for these conditions and also requires more
anual effort, especially for skills that act on the same object
ut differ only through the forces they apply onto them. There
ave been attempts to extract pre- and post-conditions [16–18].
evertheless, none of these approaches were applied on a variety
f force-based interactions, like consecutive in-contact movement
rimitives. Our approach is capable of distinguishing these skills
y combining symbolic segmentation with data-driven segmen-
ation, learning the differences between skills from data instead
f manually describing their characteristics.

.2. Data-driven approach

A data-driven approach learns to discriminate skills based on
pre-trained model or by finding grouping patterns in data. For
xample, observed motions can be encoded in probabilistic mod-
ls and later on, similar motions can be recognized by comparing
hem with the existing models [19]. Similarly, anomalies can
lso be identified by comparing measurements with previously
bserved executions [20]. In [21], a framework for task structure
xtraction was presented, which relies on the activity recognition
ethod presented in [22]. Here, activities are predicted based
n vision data. Instead, we propose our own recognition method
hat works without visual input and relies purely on motion and
orce data. Our previous work [23] only targeted the recognition
f force-based skills, so called Contact Skills. A support vector ma-
hine (SVM) was trained on such physical contact instances and
redicted the skill occurrences as part of a task demonstration.
ick and place skills as well as free motions were not considered.
The approach in [24] segments a demonstration based on

he analysis of the variance among demonstrations compared to
he variability of the data within a time window. Additionally,
ifferent object frames are exploited to assign them to each
f the segments. As stated above, this requires again a world
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T
t
t
[

odel with associated coordinate frames. This approach works
nly with multiple demonstrations of the same task, which is a
ime-consuming programming paradigm.

Template matching with HMMs was used in [25] to visu-
lly identify skills based on previously trained templates. The
pproach in [26] employs SVMs and a sliding window on the
emonstration data to detect skills. Additionally, the segmenta-
ion lines are improved by a local optimal boundary search. How-
ver, both of these approaches also limit the detection of skills
o visually observable behaviors and ignore interaction forces or
orques. To tackle this limitation, both tactile and propriocep-
ive signals were exploited in [27], presenting a segmentation
lgorithm that is based on Bayesian online changepoint detection.
Unsupervised approaches try to find similarities between

emonstrations or fit generative models to data for segmentation.
n [28], similar skill transition states in repeated demonstra-
ions of a task are identified using hierarchical clustering based
n Gaussian Mixture Models (GMM). A first GMM is fitted to
very demonstration to obtain candidate transition states, that
re then clustered in secondary GMMs in the spatial, sensory
nd temporal domain. Bayesian nonparametric extensions of the
MM are used in [29–31] where a beta process (BP) prior is
everaged to infer the number of active modes (or skills) per
emonstration and additionally allows to share identified modes
cross different demonstrations. The Beta Process Autoregressive
MM relaxes the conditional independence of observations by
escribing time dependencies between observations as a Vector
utoregressive process [29,31]. A BP–HMM is combined with a
lustering approach in [30] to determine the appropriate level of
ranularity for identified motion primitives based on clustering
erformance. In [32], the observed skill sequence can be inferred
rom a single task demonstration, where each skill’s intention
nd feature constraints are used as grouping mechanisms in
he data. The approach combines a GMM in feature space with
nverse Reinforcement Learning to capture the intention and
eature similarities of every state–action observation in a joint
robabilistic model.
One problem with data-driven approaches is that they require

ome amount of training data. For supervised approaches, train-
ng data must be also labeled, which can be an expensive process
hat blocks manpower, hardware, and computational resources.
unning data-driven approaches also comes with a delay in pre-
iction time due to computational cost and limited classification
ccuracy. These disadvantages should only be accepted if the
roblem cannot be solved by manually implementing rules that
re easy to interpret.

.3. Combined approach

A combined approach uses symbolic descriptions and data-
riven algorithms in a meaningful symbiosis. It has been shown
hat symbols can even automatically emerge from the observa-
ion of a task [33]. Here, probabilistic learning of system states
ets new symbols emerge automatically. The main reason to ex-
ract these symbols is that they can be used in task planning,
hich works with a discrete and abstract state space via the
lanning Domain Definition Language (PDDL). Such symbols can
e used as pre- and post-conditions and are extracted based on
learning problem. The problem is that the algorithm requires
lot of manually collected samples in the task space, such that

he data covers all possible eventualities that could occur in
he robot’s environment. This also assumes that simple symbols
uch as gripperOpen are learned, which is contradicting to our
otivation.
We manually define symbols only for features, whose evalua-

ion can be easily implemented and which are not overly sensitive
3

to a threshold in order to accurately detect them. An example
is the opening state of a gripper, which can be evaluated by
implementing a few lines of code. The defined symbols are then
able to segment the data in an event-based manner whenever
they change their value. Here, the evaluation of a symbol can be
based on a single measurement only, which is the fastest pos-
sible response time. Although in [33], data-driven and symbolic
approaches have been combined, the approach does not support
online recognition of skills during user demonstration. On the
other hand, only complex features should be learned that cannot
be easily described by the system designer. For example, it would
be hard for a programmer to take care of multi-dimensional
and mutually interacting dimensions, which is also known as
cross-talk. An example of cross-talk can be found in surface
electromyography, where the same muscle might affect multiple
EMG electrode channels at the same time [34]. Another challenge
would be to manually define rules for classifying data points that
are not linearly separable. Data-driven classification algorithms
can address this with nonlinear decision boundaries [35]. Further-
more, information could be rather hidden in temporal sequences
than in single states because a single state cannot express the
process dynamics. For instance, a work about force thresholds
in robotic assembly [36] could be improved by using the tem-
poral information of force transients instead [37]. Combining
the symbolic with the data-driven skill recognition utilizes the
strength of both approaches. We therefore define manipulation
skills such as pick, placemostly through symbols that can be easily
escribed and implemented by simple rules. Contact skills, which
re characterized by their time-series and temporal dynamics are
ecognized through data-driven methods.

We propose an approach for task segmentation that com-
ines symbolic evaluation with supervised data-driven methods
o recognize both manipulation and contact skills. This enables
he system to build a task representation on the fly while the
ser performs the task demonstration. The task representation
eflects how the system interpreted the demonstrated task and
elps to consolidate the user’s understanding about the robot’s
nowledge. Furthermore, it offers future options to correct it, and
hus supports non-expert users in their role as programmers.

In detail, we propose a framework that (1) reduces the amount
f training data due to ‘outsourcing’ simple skills like pick and
lace, which can be easily described in terms of symbolic precon-
itions/effects, and only learning classified skills; (2) exploits only
roprioceptive data and end-effector forces while avoiding vision
elated issues such as problematic lighting conditions, occlusion,
nd inaccuracies due to calibration; (3) segments the demon-
tration online by two simultaneous segmentation pipelines; (4)
educes over-segmentation of data-driven classifications by usage
f a segments pool and reconsideration of combined segments
andidates; (5) provides live feedback in the form of a human
eadable task representation; and (6) enables the user to debug
he graphical task representation via a graphical user interface,
hich is evaluated in a user study.

. Online skill recognition

The information flow in our framework is shown in Fig. 1.
he whole process starts with a user that demonstrates a task
o the system. The robot uses its proprioceptive measurements
o observe the human demonstration. A measurement m =

p, o, f , ϱ, g, h] consists of position p ∈ R3, orientation o ∈ R4 in
quaternions, force f ∈ R3, torque ϱ ∈ R3, gripper opening width
g ∈ R, and gripper status h ∈ {−1, 0, 1} (with −1: no object in
gripper, 0: gripper moving, 1: object in gripper). At each time-step
t , a measurement m(t) is received by the online skill recognition.
The output of the algorithm is a sequence of skill labels along with
their corresponding demonstration data segments.
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.1. Skill definition

We first describe the rules for our skill definition process. We
tart with the skills that can be symbolically described and call
hem Logic Skills, which can be found in Fig. 2 (top table). Here,
ach skill is described by a human understandable precondition
pre:) and postcondition (post:). From literature surveys [8,10],
t is known that manipulation skills such as pick and place are
ommonly used in robotics, which inspired the set in Fig. 2
top table). An abstract skill called contact can be recognized by
valuating its pre- and post-conditions, which are described by
he symbols ContactRisingEdge and ContactFallingEdge.
hese symbols are evaluated by checking if the absolute force
nd torque measurement exceeded or fall below a threshold
espectively.1 The skill is marked as abstract in Fig. 2, which
means that it will only appear in our processing pipeline and
finally be refined by our algorithm, which is explained in more
detail later. A move skill defines a section of a demonstration
here the end-effector is in motion without physical contact
nd where the gripper fingers are not actuated. The pre- and
ost-conditions AnyLogicSkillPre and AnyLogicSkillPost
efine the logical disjunction of all Logic Skills’ pre- and post-
onditions respectively. This leads to the fact that a move skill fills
ll existing gaps between the other available Logic Skills. The rest
f the described skills involve gripper operations and are termed
ripper Skills.
Next, we define the skills that are challenging to describe by

anually defined rules. We call them Classified Skills and present
hem in Fig. 2 (bottom table). We mainly rely on the identification
n [23], which resulted in explainable symbols as confirmed by
n independent group of subjects that classified these skills with
90% accuracy. Note that we also added the move skill to be

lassified. This has the reason that a classifier can make a better
rediction between free motion and contact as a symbolic pred-
cate can do, which only evaluates a fixed threshold in the force
omain. Additionally, a number of skills that are grouped together
s Contact Skills can be found. All skills from this group require a
hysical contact with the environment. Such interactions are hard
o be evaluated by manually defined conditions and are there-
ore classified by a data-driven model. References to exemplary
pplications and possible skill implementations can be found for
ress [38,39], slide [40,41], contour [41,42], peg-in-hole [43,44],
nd user, as for instance hand overs that are triggered by touching

the robot’s structure [45].
After having all skills in our framework defined, we describe

ow each of the recognition approaches work and how they are
ombined in one pipeline.

.2. Symbolic skill recognition

The symbolic approach of this work evaluates each skill’s
re- and post-conditions to recognize a suitable skill during the
emonstration. The symbolic skill recognition process using ex-
mplary data is shown in Fig. 3, step 1a . The input of the

algorithm is a stream of measurements m, marked as <in> in the
figure. The output is a list of segmentation lines and skill labels,
marked as <out>.

The pre- and post-conditions for each skill, which are spec-
ified in Fig. 2 (top) are evaluated at each time-step. These are
conditions that need to be fulfilled before a skill can take place
and after a skill has taken place. In our work, the conditions are
computed from the movement of the robot’s gripper fingers as
well as the measurements from the FT-sensor installed between

1 The thresholds for force and torque were set to 5 N and 2 Nm respectively
ased on preliminary experiments and as inspired by [38].
4

Fig. 2. Logic and classified skill definitions.

he gripper and the robot. As these symbols are not enough
o distinguish between the different Contact Skills, the symbolic
pproach is limited to detecting an abstract contact skill instead.
verall, the symbolic segmentation can detect the skills specified
n Fig. 2 (top).

Algorithm 1 describes the process of evaluating the pre- and
ost-conditions in the symbolic recognition. All skills start with
heir status set to IDLE, until the symbolic conditions indicate
hat the preconditions are met for any of the skills. Then, a skill’s
tatus is set to ACTIVE, which it continues to be as long as
ts post-conditions are met. Once its postconditions are met, its
tatus is set to DONE and the skill is added to the list of detected
kills together with its start and end time. If the ACTIVE state
emporally overlaps for multiple skills, the one that first fulfills
ts post-conditions dominates the skill recognition and causes a
eset of the ACTIVE state of all other skills. An exemplary output
an be found in Fig. 3, step 1a , labeled as <out>.

2.3. Data-driven skill recognition on time window

Fig. 3, step 1b shows an exemplary process of the data-driven
skill recognition. The input (labeled as <in>) is again a stream
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Algorithm 1 Symbolic Recognition
Input: Measurements: m, Set of Logic Skills (Fig. 2): LS

while mt do
condvals← evaluate_conditions(mt ) ▷ Compute value

of each predicate
for s ∈ LS do

update_status(s, condvals) ▷ set IDLE, ACTIVE
or DONE

if s.status == DONE then
segments([s.start : s.end])← s.name ▷ label

each sample with skill name
for s ∈ LS do

s.status← IDLE
end for
break

end if
end for

end while
Output: segments

of measurements m and the output (labeled as <out>) is a list
of labels. The data-driven skill recognition proposed in this work
uses a support vector machine (SVM) with a sliding window
approach similar to [26]. At each time-step t , a feature vector
F (t) is computed from the measurements

[
m(t−W+1), . . . ,m(t)

]T in
the current time window of length W . The SVM uses this feature
vector to predict which skill is most likely performed in the given
time window.

The features used in this approach consist of two parts. The
first part uses features that are extracted with the publicly avail-
able library tsfresh [46]. We use their proposed minimal feature
set, consisting of seven features, which are standard deviation,
sum of values, maximum, median, minimum, variance, and mean.
The feature computation maps a uni-variate time series of length
W to seven feature values, defined as

ftsfresh : RW
↦→ R7.

Consider the time series

M tsfresh =

[
m(t−W+1)

tsfresh , . . . ,m(t)
tsfresh

]T
∈ RW×4

with a number of W samples, where a single sample is defined
as

m(t)
tsfresh = [∥ṗ∥, ∥ȯ∥, ∥f ∥, ∥ϱ∥] ∈ R4.

In order to obtain m(t)
tsfresh, we compute the velocity ṗ from the

Cartesian position p and the angular velocity ȯ from the orienta-
tion o of the end effector frame. Additionally, as the skills should
be described independently of a task-specific frame, we compute
the Euclidean norm over all dimensions of a variable x as ∥x∥.
This gives us the magnitude of each considered modality and
makes these new features invariant to a specific Cartesian frame.
We obtain the feature vector F (t)

tsfresh ∈ R28 by applying ftsfresh
dimension-wise on M tsfresh and by stacking the results.

The second part consists of manually designed features mainly
taken from a previous work [20], which are denoted as F (t)

add. They
are shown in Table 1 and address physical relations between
motion and force as they are expected to occur in the Contact
Skills.

A combined feature vector is constructed as F (t)
=[

F (t)
tsfresh, F

(t)
add

]
. Finally, F (t) is normalized dimension-wise to mean

µ = 0 and standard deviation σ = 1 for improved numerical
stability in the classification.

As the strength of the data-driven segmentation lies in detect-
ing skills by their force and torque profile, the SVMs are trained
 t

5

Fig. 3. Skill Recognition Pipeline. The color code is the same as in Fig. 2, where
the logic skill definitions are in green, and the classified skill definitions are
in blue. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

to predict the Classified Skills that are specified in Fig. 2 (bottom).
The Gripper Skills specified in Fig. 2 (top) (pick, place, open-gripper,
lose-gripper) are not learned in a data-driven manner, as they can
e robustly and efficiently identified by the symbolic segmenta-
ion without any uncertainty. The SVMs used in this approach use
Radial Basis Function (RBF) kernel. The regularization parameter
nd the kernel bandwidth are found through a grid search. The
VMs are trained on examples of the skills both consisting of the
hole skill as well as sub-segments of the skills with the same
ample length W as the sliding window.
Algorithm 2 clarifies the computational steps required for the

ata-driven recognition approach. While the window is sliding
ver the incoming measurements stream, the SVM keeps on pre-
icting for each new sample and the predicted label is appended
o a list. Note that it is no problem to predict online with a rate
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Table 1
Additional contact skill features.

Feature Definition

mean translation power pf = 1
L

∑N
t=1 f

(t)T
· ṗ(t)

mean rotation power pϱ =
1
L

∑N
t=1 ϱT

t · ȯ(t)

slope to max force ∆f =
max

(
f̂ (1),...,f̂ (N)

)
−f̂ (1)

argmax
n

{
f̂ (n)

}
with f̂ (t) = ||f (t)||2

slope from max force ∇f =
f̂ (N)
−max

(
f̂ (1),...,f̂ (N)

)
N−argmax

n

{
f̂ (n)

}
contact duration N

contact distance d = ∥p(N)
− p(1)

∥

force–torque correlation factor Coefficient of determination R2 ,
obtained from a linear regression that
fits f : ϱ −→ f .

of 50 Hz since an SVM is known to be computationally very
efficient.

Algorithm 2 Data-driven Segmentation & Recognition
Input: Measurements: m, Set of Classified Skills (Fig. 2): CS

ylast ←None
tlast ← 0
while mt do

F (t)
← compute_features([m(t−W+1),· · · ,m(t)

]) ▷ Compute
features over batch of measurements with length W

y = SVM.predict(F (t)) ▷ Predict skill label
if ylast is not y then

segments[tlast : t] ← ylast
ylast ← y
tlast ← t

end if
end while

Output: segments

2.4. Combined recognition

This section describes the steps 2⃝, 3⃝, and 4⃝ of the recog-
nition pipeline in Fig. 3, where both previous recognition steps
from 1a and 1b are merged into a common pipeline.

2.4.1. Construction of segments pool
The next stage of the skill recognition pipeline is shown in

Fig. 3 2⃝ and combines the output of both recognition sources.
Here, a so-called segments pool is filled. The inputs are the
segmentation lines and skill labels of both symbolic 1a and
ata driven skill recognition 1b . The output is a list of segment
andidates, which are exemplary shown under step 2⃝. These
andidates are constructed by the following three rules:

1. A segment that is intersected by a segmentation line of the
other recognition source leads to the addition of both split
parts as segment candidates. An example is the addition of
the segment candidates in Fig. 3 labeled as s11 and s12.

2. If two segments from the same recognition source, which is
either symbolic or data-driven, follow each other, e.g. press
and slide, it leads to the addition of the concatenated seg-
ment. An example is given with the segment candidate in
Fig. 3 labeled as s21. This enables the recognition of skills
that consume more time and are composed of multiple
steps, such as peg-in-hole.
6

3. If a segment is intersected by the segmentation line of a
Gripper Skill, it does not lead to the addition of new seg-
ment candidates and the overlapping segment candidate is
removed from the pool. An example for excluded segments
is given in Fig. 3, step 2⃝, with the crossed out segment
candidates, labeled as s21 and s31.

Rule (3) emerged since we consider the recognition of Gripper
kills to be highly reliable without uncertainty, and therefore do
ot create new segment candidates at regions that overlap with
ne of the Gripper Skills.

.4.2. Data-driven skill recognition of complete interactions
As soon as the segment candidates are available in the seg-

ents pool, they can be classified by the data-driven approach.
he procedure in Fig. 3, step 3⃝ uses the same implementation
s the one used in step 1b . However, it is operated with these

differences:

1. The SVM is trained solely on complete examples of Classi-
fied Skills instead of examples observed in a time window
of fixed length.

2. The SVM predicts skills based on features that were com-
puted from the segments in the segments pool instead of
features computed on a time window of fixed length.

Note that the segment candidates vary in their duration. How-
ever, computing the features over one segment always leads to
a single feature vector F of fixed length. This means that each
feature is designed to produce a scalar when computed on a time
series of arbitrary length. See Table 1 for some examples.

From the segments pool, the final result is found by a greedy
search. Here, each segment obtains a score for each possible skill
class using the results of the SVM’s decision function, given as

DSVM : RNF ↦→ R6 with DSVM(F ) = z, (1)

which maps the feature vector F to a vector z that holds the
prediction scores for each of the six possible Classified Skills,
where NF is the number of dimensions in the feature vector F .
The skill with highest accuracy is extracted by
∗

s = argmax
s
{z}, (2)

given a feature vector F n for a segment s.
The skill with the highest score is appended to the task rep-

resentation. All other segments that overlap this segment are
removed from the segments pool. This is repeated until the whole
demonstration has been segmented. Thus, the move and Contact
Skills are found.

2.4.3. Finalization with gripper skills
In Fig. 3, step 4⃝, the Gripper Skills are added to the task repre-

sentation. They are directly taken from the symbolic recognition
results and overwrite what is existing in the task representation.
Exemplary, the input of this step is labeled as <in>, coming from
the data-driven results of step 3⃝. After overwriting the input
with the Gripper Skills, the output can be found labeled as <out>.

In a final post-processing step, all segments that are below
a predefined minimum length are split in the middle and the
resulting parts are merged into the segments before and after,
to reduce over-segmentation.

2.5. Extension to online segmentation

The previously described method of combining the symbolic
and data-driven recognition requires the demonstration to be
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ompleted, i.e. fully observed by the system. This is a require-
ent to run the approach offline. To overcome this, we propose
n online segmentation procedure in a two step manner. The
seudo-code can be found in Algorithm 3.

Algorithm 3 Online Segmentation
Input: Measurements: m, Skill Classes: skills

while m do
s← get_symbolic_segmentation_results(m)
if s.state == DONE and s.type == contact skill then

get_data_driven_segmentation_results()
else

show_preliminary_segmentation()
end if
if s.type == gripper skill then

do_combined_segmentation(s)
end if
skill_sequence.append(s)
show_combined_segmentation()

end while
Output: skill_sequence

In the first step, the symbolic recognition detects online which
kill is currently performed. When it detects a contact skill, the
VMs of the data-driven approach predict the most likely skills
s specified in the Contact Skills. The detected skills are used to
uild the task representation online. An example can be seen in
ig. 4, first row. Once the symbolic skill segmentation detects
he end of a Gripper Skill, such as pick or place, an intermediate
fixed segmentation point is set, since it will not change during
the rest of the recognition process. Therefore, the part of the
demonstration that ends with this point can already be treated
as a complete demonstration part, and thus be processed with
the combined recognition algorithm. The results of the combined
recognition then replace the preliminary recognition in the task
representation (Fig. 4, middle row). This lets the representation
constantly evolve, where past skills of the demonstrations are
already finalized while the most recent skills are displayed as pre-
liminary result. This process continues until the demonstration is
finished and the whole task representation has been processed
with the combined recognition algorithm (Fig. 4, bottom row).

2.6. Task representation as feedback

Due to the nature of the online skill recognition, the user is
able to receive an immediate feedback about what the robot has
already learned during the demonstration. This task representa-
tion is constantly updated as the demonstration progresses and
the recognition results change from the preliminary results to
the final results. The confidence of the online recognition process
can be indicated by a color for each skill, which is exemplary
shown in Fig. 4. Here, the robot continually provides a visual
task representation where the system’s confidence is increasing
during the recognition progress.

3. Experiments

The framework is first assessed offline using a dataset of
demonstrations (Section 3.1). Next, its segmentation and skill
recognition performance is compared to only symbolic and only
data-driven approaches using an exemplary task demonstration
(Section 3.2). Table 2 shows all parameter values that were used
throughout the experiments. The SVM parameters were chosen
empirically by analyzing preliminary experiments. We suggest
that such parameters should be subject to future optimization,
e.g. by a grid search combined with cross validation.
7

Fig. 4. Consolidation of task representation during online kinesthetic teaching.
The colors allow the user to monitor to which extent each skill is consolidated,
i.e. which step of the online recognition it has already passed. Yellow: SVMs
currently predicting the label. Green: the preliminary recognition is done.
Turquoise: the combined recognition is finished. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Parameter values used in the experiments.
Parameter name Value

sampling rate 50 Hz
SVM feature window length W 0.4 s
SVM regularization parameter C 100
SVM RBF kernel coefficient gamma = 1

2σ2 0.01
minimum skill length before merging 0.4 s

3.1. Skill recognition performance

The recognition algorithm was trained and evaluated on a
dataset based on demonstrations of three people. In the dataset,
approximately 100 demonstrations were provided per each skill.
The dataset was recorded in batches of skill demonstrations,
meaning that each user demonstrated e.g. 10 times the press skill,
then 10 times the slide skill and so forth. The skills were separated
by demonstrating a free motion without contact. This process was
repeated until each skill was recorded for about 100 times.

The recognition algorithm was tested in a five-fold cross-
validation experiment, using 80% of the data-set for training and
the remaining 20% for testing. The ground truth was specified by
annotating the skills manually that were used in the demonstra-
tion. The evaluation is based on two commonly used metrics [47],
which are temporal tolerance and classification by data point
label. The temporal tolerance indicates how close the algorithmic
segmentation lines lie to the ground truth, without considering
the labels. All algorithmic segmentation lines that lie in a region
of ±terr around the ground truth are considered as True Positive
TP), while all algorithmic segmentation lines that lie outside of
uch a region are considered as False Positive (FP). If a ground
ruth segmentation line has no corresponding algorithmic seg-
entation line within its region, it is considered as False Negative

FN). The region margin ±terr was empirically chosen as 0.2 s in
his evaluation. The overall accuracy is computed as F1-score as

1 =
2 · TP

2 · TP + FN + FP
. (3)

Our framework has an F1 score of 0.93, which means that 93% of
the found segmentation lines lie within a region of ±0.2 s around
the ground truth. The accuracy of the segmentation lines matters,
as even if a skill has been mislabeled, as long the segmentation
lines are correct, the user could correct the label of the skill,
without having to further adapt the segmentation result.

The second metric evaluates the classification accuracy by data
point label, denoted as

C = Ncorrect_labels/Nall_labels. (4)

It represents the ratio of how many of the data point labels l have
been chosen correctly by the algorithm. From this, a confusion
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Fig. 5. Confusion matrix for the classification by data point label.

atrix can be calculated showing what percentage of ground
ruth labels lg have been labeled with which label la by the
algorithm. The confusion matrix of our approach is shown in
Fig. 5. The average accuracy is 92.2%, which means that such
percentage of data points is correctly labeled. Most confusion
exists between the contour skill that is used to follow the outline
of an object, and the slide skill that is used to move over the
planar surface of an object while maintaining contact [23]. This
might be caused by similar interaction principles in the user’s
demonstration.

3.2. Comparison of approaches

We compare the results of the purely symbolic approach from
stage 1a , the data-driven approach from stage 1b , and our pro-
osed approach from stage 4⃝. As exemplary data, the experi-

menter demonstrated numerous skills in a toy environment. A
part of this environment is shown in Fig. 6 (left), which was
also used for demonstrating a peg-in-hole skill Fig. 6 (right). The
segmentation results are shown in Fig. 7. The top row of this
figure shows the symbolic recognition results, where the Gripper
Skills were correctly recognized but the areas of contact just lead
to an abstract contact skill. This representation is missing the
specific skill type of the Contact Skills and it does not resolve
multiple sequenced skills within one contact block, for example
in the contact area starting at time = 25 s. The middle row
shows the data-driven approach and how it oversegments the
demonstration. It produces numerous artifacts in the form of
very short skills. For example, right after time = 10 s, the skills
of contour, slide, and peg-in-hole were recognized sequentially,
although the demonstration contained only a single peg-in-hole
skill in this time-frame. This problem can be explained by the
fact that a peg-in-hole could itself consist of a sequence of other
skills. Such skills are then favored by the greedy search, given
that only a smaller time-frame is considered. Our approach is
shown in the bottom row. Since we employ a segments pool as
depicted in Fig. 3, the data-driven algorithm is also able to classify
combined sequences of skills and finds the most likely candidate
by the greedy search. This allows to handle situations where the
observed skills significantly differ in their duration. Summarized,
our algorithm handles the oversegmentation problem of the data-
driven approach and recognizes the full skill palette that we
introduced in the beginning.
8

Fig. 6. Left: Three different constellations for a peg-in-hole skill with a square,
small round, and large round peg. The left and right constellation are contained
in the dataset for SVM training. Right: exemplary peg-in-hole task as contained
in the segmentation analysis in Fig. 7.

3.3. Discussion

For the assessment of the presented framework, we evaluated
the skill recognition performance based on a dataset (Section 3.1)
and by an exemplary demonstration, where we compared a sym-
bolic, a data-driven and our approach. Our method uses only
proprioceptive sensor values and does not require recognizing or
tracking objects in the environment to build a task representa-
tion. This enables the skill recognition to be trained on one set
of objects and to be deployed in different setups with unknown
objects. However, changes in the scene would not be recognized
by the system due to the missing visual input.

One limitation of the system is the robustness towards demon-
stration speed in combination with the minimum allowed skill
duration. If a user demonstrates in a too fast pace and the overall
duration of a specific skill’s data segment lies below the minimum
skill length (Table 2), the skill will not be recognized at all. This
could be avoided by familiarizing the user with the system. Al-
ternatively, the minimum skill length could be decreased, which
would potentially lead to very small segments. In consequence,
the user could make use of a GUI that helps to decide which
of these skills shall be kept or merged into others. Our segmen-
tation approach makes use of the combined features from f add
nd f tsfresh. Preliminary experiments pointed us to this selection,
ut in a future work, an ablation study should be conducted to
valuate the importance of possible combinations of these two
eature sets.

The online segmentation capability distinguishes our approach
rom purely data-driven approaches like [28–30,32]. By com-
ining symbolic with data-driven segmentation based on SVMs,
e are able to efficiently evaluate the segmentation result as
escribed in Section 2 at every time step during the user demon-
tration. The methods [29,32] employ a sampling-based inference
pproach, which cannot be evaluated online. In [30], the seg-
entation result of different demonstrations is forwarded to a
lassification task, which also renders it unsuitable for online seg-
entation. Furthermore, our method can segment a single task
emonstration, whereas the approaches [28–31] require multiple
emonstrations of the same task. The approaches based on a
P–AR–HMM for segmentation [29,31] use the variation of skill
ndpoints from different demonstrations to detect the relevant
oordinate frame of every skill. Similarly, [28] analyzes skill end-
oints of different demonstrations to obtain transition states for
egmentation. Our approach uses a predefined skill library to
void the need for multiple user demonstrations. This may limit
he flexibility of detecting unknown skills, but we expect that
n a production environment, reusable domain specific skills are
sually known beforehand and are sufficient to handle most
ituations.
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. User study

The user study in this section has the following aims: (1) as-
ess the segmentation accuracy and correctness of the recognized
kill sequence in a laboratory study with six subjects; (2) evaluate
f users are able to successfully teach robots and are able to debug
ncorrect robot programs with the help of the task representation
hat our framework automatically assembles from the recognized
kills.
All participants have some technical background in different

ields of robotics, but they have neither used our framework nor
ave they participated in the data collection for our training set.

.1. Procedure of the laboratory study

The laboratory study consists of a teaching phase (points
. . . 5) and a debugging phase (points 6 . . . 9) corresponding to
he following procedure.

1. Experimenter shows instruct. video for method A
2. Experimenter shows instruct. video for task 1
3. Subject demonstrates task 1 with method A
4. Experimenter shows instruction video for task 2
5. Subject demonstrates task 2 with method A
6. Experimenter explains that a task can be debugged given a

task representation of method A
7. Experimenter asks subject for expected task outcome of

debug task D(x, y) and lets subject correct it if desired using
method A

8. Experimenter asks subject again for expected task outcome
and lets subject correct if desired

9. Subject observes the task execution according to the cur-
rent task representation

10. Subject evaluates overall framework by questionnaire con-
cerning method A

11. Subject evaluates comparison between method A and B by
questionnaire

ask 1 and 2 refer to the stamping task and assembly task re-
pectively. Method A and B refer to the skill-based and time-line
epresentation, which is further detailed in Section 4.4. The above
teps from 1 to 10 are then repeated but with method B in-
tead of method A. Throughout the whole study, the sequential
rder of tasks ∈ {1, 2}, debug tasks D(x, y) ∈ {D(1,1), D(1,2),
(2,1), D(2,2)}, and methods ∈ {A, B} were permuted by a Latin
quare design [48]. Before the experiment, the participant gets
ome time to familiarize with the robot in gravity compensation

ontrol. d

9

In the teaching phase (points 1 . . . 5), the participant programs
two robot tasks with two different forms of visual feedback, lead-
ing to four programming sequences. The participant is informed
that after each demonstration, the robot will replay it to also
record the robot’s repetition of the task. For this, we used a
Cartesian impedance controller. From the user demonstration and
robot repetition data, we construct a Gaussian Mixture Model for
each skill. Gaussian Mixture Regression is then applied on this
model to obtain a trajectory for task execution. More details about
this procedure are described in [49].

In the debug phase (points 6 . . . 9), the participant examines
reviously programmed task representations that were demon-
trated by the experimenter either in a correct or intentionally
rong manner. These debug tasks use the same environment of
he stamping and assembly task. This leads to four different debug
ask conditions with associated task representations, which are:
(1,1): stamping task — correct; D(1,2): stamping task — wrong;
(2,1): assembly task — correct; D(2,2): assembly task — wrong.
he incorrect tasks showed a wrong skill sequence with respect to
he correct skill sequence of the stamping and assembly tasks. The
ubject’s goal is to validate if those task representations correctly
erform the tasks. To see if the task representation alone offers
nough information, the users are asked to give their opinion
n the correctness before they are allowed to watch the robot
xecute the program. If they find a task representation to be
ncorrect, they are asked to correct it. Here, the users get the
hance to correct a faulty robot program by selecting the skill
hich appeared to be faulty in the task representation. Next, the
obot moves to the correct start location. Finally, the user can give
new demonstration that is subsequently segmented, resulting in
new, updated task representation.

.2. Skill recognition for online task representation

The main purpose of our system is to build a task representa-
ion in the form of robot skills, while the user teaches the robot.
herefore, we requested two different users to program a DLR
WR IV [50] robot with the help of our framework. The robot was
quipped with a Robotiq 85 two-finger gripper that is attached to
wrist-mounted FT-sensor, measuring the wrench that acts on

he gripper. This setup can be seen in Fig. 8. The user transferred
he task by kinesthetic teaching and used a button to open and
lose the gripper. We designed two small programming tasks as

escribed in the following.
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Fig. 8. Stamping task instructions. (a) pick the stamp, (b) push it into the ink pad and then, push it into the ink target surface, (c) place it at its original location,
and (d) move gripper up to the home position. The task demonstration is shown in the accompanying video for the stamping task.
4.2.1. Stamping task
The visual task description for the stamping task is shown in

ig. 8. The textual instructions are provided in the figure’s caption.
ere, we requested from the user to demonstrate a task that
nvolves two force-based interactions with the environment, one
hen pressing the stamp into the ink pad, and another one when
ressing the stamp onto the ink target surface. Both times, we
xpect the system to detect a press skill.
We evaluated how both users programmed the robot based

n the task description. We show the skill recognition results
longside the gripper position and applied force in the z-axis
espectively since these are the dimensions that represent the
ask best. The results are shown in Fig. 9 for both users, who
chieved a segmentation accuracy of 96.9% (f1-score = 0.75) and
8.2% (f1-score = 1) respectively. We can see that the robot moved
o the stamp (move), picked it (pick), moved to the ink pad (move),
ressed on it (press), moved to the ink target surface (move),
ressed on it (press), moved to the stamp’s place location (place),
laced the stamp (place), and moved up to the robot’s home pose
move). Both force-based interactions were recognized as press
kills, which can be seen by the regions of large force magnitude
n the bottom plot of each user.

.2.2. Assembly task
We designed an assembly task, where the users were asked to

pply glue to a surface and then mount an object on it. The visual
ask description can be seen in Fig. 10, where the figure’s caption
ontains the textual task instructions.
Again, we represent the end effector position and force in the

-axis and the task segmentation and skill recognition results
n Fig. 11 for subject 1 and 5. For subject 1, we see a validly
rogrammed task, where the glue stick is picked (pick), then
led over the glue contact surface (slide), and placed back at
he original location (place). Next, the object is picked (pick) and
ressed on the glue contact surface (press). While still being in
ontact with the environment, the gripper is opened, leading
o the recognition of a place skill. Finally, the robot is moved
o its home pose (move). We observe that the user decided to
ress on the object while it is still grasped, which meets the
ask description to assemble the object by applying pressure onto
he glue bonding. Considering the strategy of subject 1, we can
ee that the skill recognition seamlessly detected the transition
rom press to place without an intermediate move (Fig. 11(a)).
e emphasize that the presented framework is able to recognize

ransitions from forceful interactions to gripper actions, where
he contact break with the environment is caused by the gripper
pening itself.
Subject 5 followed the strategy of subject 1 until the picking
f the object. Instead of using the sequenced (press) and (place)

10
Fig. 9. Stamping task results for subject 1 and 5. pz shows the position in z-axis
and fz the force in z-axis.

strategy, subject 5 placed the object without applying significant
force (place), then moved the gripper above the object (move),
closed the gripper without object, (close-gripper), moved down
to the object (move), pressed onto the object with the empty and
closed gripper (press), and finally moved the end effector to the
home position (move). Although the strategy differed compared
to subject 1, both users were able to achieve the task goal, which
is mounting the object on the object target by applying pressure
onto the glue bonding. Our method correctly detected the skills
which were performed by the two users.
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i

Fig. 10. Assembly task instructions. (a) pick the glue stick, (b) slide it over the contact surface and place it back at its original location, (c) pick the object and press
t onto the object target. (d) move gripper up to the home position. The task demonstration is shown in the accompanying video for the assembly task.
Fig. 11. Assembly task results for subject 1 and 5. pz shows the position in
z-axis and fz the force in z-axis.

4.3. Performance metrics

All participants were given the same video instructions about
how to program the stamping and assembly task, which is also
represented in Figs. 8 and 10. Regarding the assembly task, there
was no specific gluing strategy required, namely the sliding action
could be performed as desired by the user. For instance, some
users decided for a single and possibly curved sliding interaction
and others decided for multiple sliding interactions with the glue
contact surface.

Table 3 shows the task representation results of the stamping
and assembly task for each of the subjects numbered from one
11
to six. We also state the ground truth (GT) for a successful skill
sequence, as it is instructed to the participants.

Even though the initial instruction video suggests a skill se-
quence that solves the task, other skill sequences that originate
from the user’s own strategy can still lead to a successful task ex-
ecution. We marked successful executions in column ‘‘Succ’’. with
✓and unsuccessful ones with –. Special cases that are marked
with (*) are referred to in the discussion Section 4.6. Table 4 sum-
marizes the quantitative performance of the framework when
confronted with the untrained subjects of this study. The metrics
were already introduced in Section 3.1. The laboratory study
achieved an F1-score of 0.87 and an accuracy of 96%.

4.4. Evaluation of task representation

The evaluation consists of two parts, namely the laboratory
study, as described in Section 4.1, in which six participants pro-
gram a robot using our framework, and a remote study in which
26 users were asked to evaluate the comprehensibility of our
approach. There were different participants in each of the parts.
We name the style of our task representation skill-based. As
a baseline, we define a so-called time-line task representation
that does not provide a skill annotation for each demonstration
segment. It has been introduced in [51], and its segmentation
approach uses the Douglas–Peucker line simplification algorithm
to detect notable points of a trajectory, which are then used to
encode the trajectory. As these points have no semantic mean-
ing, the resulting task representation describes the learned task
through a time-line, showing the detected points as well as
gripper movements. Since we focus on the evaluation of the task
representation, we used the same segmentation points found
in our approach to construct the time-line task representation.
The time-line task representation shows the segmentation result
without skill annotation and only the openings and closings of
the gripper are displayed. The same task, but in different task
representations can be seen in Fig. 12. The contact skills used
in the experiments were limited to press and slide, to decouple
the classification results from the evaluation of the task rep-
resentations. The time-line representation, like the skill-based
representation, is updated online when a new task segment is
found; it displays the current segment while the task is being
replayed; and it allows the robot to be moved to a specific point
or to delete points through the user interface, e.g., for debugging
purposes.

After performing all steps for one of both task representations
in the laboratory study, the users were asked to fill out question-
naires. The NASA-TLX was used to measure the workload and the
ISO 9241-110 questionnaire for Interaction Principles was used
to evaluate the quality of interaction between the robot’s user
interface and the human. To further investigate the explainability
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Table 3
Task representation results.
Subject ID Task representation Succ.

stamping GT (as instructed) move, pick, move, press, move, press, move, place, move

1, 2, 3, 5 move, pick, move, press, move, press, move, place, move ✓
4 move, pick, move, press, move, press, move, press, place, move ✓*
6 move, pick, move, press, move, place, move –

assembly GT (as instructed) move, pick, move, slide, move, place, move, pick, move, press, place, move

1 move, pick, move, slide, move, place, move, pick, move, press, place, move ✓
2 move, pick, move, slide, move, press, move, place, move, pick, move, press, place, move, close_gripper, move, press, move ✓**
3 move, pick, move, slide, move, slide, move, place, move, pick, move, place, move, close_gripper, press, open_gripper, move ✓**
4 move, pick, move, slide, move, press, move, place, move, pick, move, place, move, press, move ✓***
5 move, pick, move, slide, move, place, move, pick, move, place, move, close_gripper, move, press, move ✓**
6 move, pick, move, slide, move, place, move, pick, move, place, move –
Table 4
Overall performance metrics.

stamping assembly average

F1 score (see. Eq. (3)) 0.90 0.84 0.87
C (accuracy, see. Eq. (4)) 0.97 0.94 0.96

Fig. 12. Top: stamping task in the time-line representation; bottom: stamping
task in the skill-based representation.

of the task representations, based on [6], questions with regards
to three more categories were used: trust in the robot, ease of
debugging and match of the user’s mental model to the real robot.

The remote study was designed as an extension of the labo-
ratory study. It uses the same robotic task setting and considers
only the debug phase. Since the subjects could not program a real
robot, they were asked to match a task description presented as
a video to a task representation. Instead of correcting the robot
program, they labeled it only as unsuccessful.

The subjects were split into two equally sized groups, each
only seeing one of the task representations. To evaluate the repre-
sentations, the ISO 9241-110 questionnaire and the explainability
questions were given.

4.5. Subjective results

A number of subjective results were collected throughout
the user study with the help of questionnaires. The perceived
workload when using the approaches with different task rep-
resentations can be seen in Fig. 13. A clear reduction of the
mental workload and effort is visible for the use of the skill-based
representation in comparison to the time-line representation. The
intuitiveness and usability of the representations is compared
in Fig. 14, where the results of the ISO 9241-110 questionnaire
can be seen. On average, the users rated the usability of the
skill-based task representation 32% better than the time-line rep-
resentation. Especially in the categories evaluating the intuitive-
ness of the representation, the skill-based task representation
drastically outperformed the time-line task representation: The
self-descriptiveness of the skill-based task representation was
rated 48% better and the conformity with the user’s expectation
50% better.

To investigate further in which aspects of the teaching pro-
cedure the representation of the robot’s knowledge influences
12
Fig. 13. The results of the NASA-TLX questionnaire answered by the participants
of the laboratory study. The users score the categories on a scale from 1 (best)
to 20 (worst). The plots show the mean of the scores given for the individual
categories for the skill-based task representation used in our approach (blue) and
the time-line task representation (red). The ⋆ marks that a p-value of p < 0.05
was found with a Wilcoxon signed rank test. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 14. The combined results of both the online and the laboratory study for the
ISO questionnaire. The scores rate how much the users agree to the category
from 1 (Strongly Disagree) to 7 (Strongly agree). For details about the ⋆ and
colors please refer to Fig. 13.

the teacher, the results shown in Fig. 15 are grouped in the
aforementioned categories as proposed in [6]. In the debugging
category, the users were asked to rate the ability to detect er-
rors in the robot’s learned program with the help of the task
representation. From the results, a clear preference for the skill-
based task representation can be seen. The users’ self evaluation
is also confirmed by the number of times the users were able to
predict if a task representation would perform a task as desired,
for which the results can be seen in Fig. 16. It shows that,
with the help of the skill-based task representation, 84% of the
participants were able to identify that the visualized task repre-
sentation would not match the intended task goal. In contrast,
only 64% could do so with the time-line task representation. In
the categories match of mental model and explainability, the skill-
based task representation also outperformed the time-line task
representation drastically (see Fig. 15). The influence of the task
representation was also noticeable in the laboratory study. Most
participants caused the detection of a press skill before the placing
of objects, as they would forcefully set them on the workspace. In
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Fig. 15. The combined results of both the online and the laboratory study for
he explainability questions. For details about the ⋆ and colors please refer to
ig. 13. The questions were grouped in the categories ’Ease of debugging’, ’Trust
n the robot’, ’Match of the user’s mental model to the robot’s real knowledge’
nd ’Explainability of the task representation’, shown here from left to right. The
sers rated on a 5-point Likert scale from 1 (Strongly Disagree) to 5 (Strongly
gree). The higher the result, the better.

Fig. 16. The results of the debug tasks. The participants were asked whether
a task representation would execute the task successfully. The diagrams show
the percentage of answers where the user’s predicted outcome matched the
task outcome. The answers were evaluated to be correct, false, or undecided
(not sure) for the skill-based task representation (left) and the time-line task
representation (right).

the time-line representation, none of the users chose to correct
this behavior, which could clearly be seen in the robot’s execution
of the task, while, in the skill-based task representation, 50% of
the users removed this press skill, as the graph did not match their
expectation of how the task should be executed.

The users also rated their trust in the robot higher (24%),
even though the robot’s execution of the taught programs was
independent of the task representation. In a final oral interview in
the laboratory study, the participants showed a clear preference
for the skill-based task representation. When asked for their
first impressions, half of the participants found the time-line
representation easier to understand when seeing it for the first
time, as it conveys less information compared to the skill-based
representation. However, their preference shifted to the skill-
based representation when asked which one they found easier
to work with.

4.6. Discussion

The user study has shown that the strategy of different sub-
jects might differ from each other for the same task. However,
most subjects reached the task goals with their own strategy in
each task. Variations between task description and user’s teaching
behavior are marked with the symbol * in Table 1. Table 3. For
the stamping task, the symbol * denotes that one user pressed
the tool twice on the ink target surface, which has been correctly
recognized by the system, but was not required from the task
description. For the assembly task, the symbol ** marks users
that decided for another strategy, which involves closing of the
gripper before applying pressure on the object. In this case, the
skills were also correctly recognized by the system and the task
was performed successfully. User 4 (***) demonstrated a skill
sequence that involved two additional press skills caused by con-
tacting the environment with the tool. This might be due to low
13
expertise in kinesthetic teaching, but did not lead to unsuccessful
task execution.

Considering the human and robot perspective, we see a num-
ber of future benefits from the obtained task representation. First,
it contains the knowledge about the recognized skills, which can
be used by the robotic system to efficiently reproduce them. Here,
the robot can rely on a library of existing skill implementations
to execute the skills using an optimized strategy. Such imple-
mentations are known from the state of the art, for instance
considering a touch skill [38], a slide and contour skill [41,52], or
a peg-in-hole skill [43]. Second, the user could adapt skill-related
parameters given a graphical interface without demonstrating the
task again. An example is to adapt the pressing force in the press
skill. Third, the user could adapt the task representation itself
without providing a new demonstration, for instance, exchanging
skill types that fit better to the task requirements. An example is
that the system identified a skill of type ‘‘slide’’ although the user
wants to employ a skill of type ‘‘polish’’. With that, the associated
data segment would be reused to parameterize another skill
implementation. Fourth, the user can observe what the robot is
currently performing, which helps the robot to explain itself and
enables trust in the system.

The results of the user study show that a skill-based task
representation outperforms a time-line task representation in
regards to its explainability and usability. The users could find
errors in the task representation at first glance for the skill-
based representation, while the time-line representation forced
users to go through every single step of the task and estimate
how many steps this might correspond to in the time-line. When
asked to correct a faulty program, the users chose to insert new
demonstrations in the time-line task representation at points
where the gripper opened or closed, as these were the easiest
to detect, while the skill-based task representation allowed the
users a more nuanced correction of the task representation. Fur-
thermore, the users of the laboratory study showed a stronger
indifference towards correcting their own taught programs when
they were presented in the time-line task representation. Es-
pecially in the aforementioned case of the detected press skills
before the place skills, only in the skill-based representation users
closely inspected the task representation and noticed the ne-
cessity to correct this mistake. This stronger engagement with
the task representation in the skill-based form is coupled to the
users’ stronger control over the robot’s knowledge. Thus, the
combination of a stronger incentive to engage with the taught
program and a reduced workload makes the skill-based task
representation more suited to be used by non-experts.

The accuracy of the skill recognition lies by 96% within the
user study. Therefore, it can be argued that the proposed frame-
work is robust enough to work with users that were never trained
on the system before.

5. Conclusion

We introduced an online task segmentation and skill recogni-
tion algorithm that combines symbolic segmentation in the form
of evaluating preconditions and postconditions and data-driven
segmentation and recognition in the form of a classifier that
predicts appropriate skills. This combination enables the detec-
tion of a wider range of skills, involving Contact Skills, while still
allowing the algorithm to run online. The experimental results
confirm the recognition capabilities and showcase how task rep-
resentations emerge from kinesthetic user demonstrations. These
task representations are consolidated on the fly, whenever the
incoming data increases the confidence of the system. With that,
the users receive immediate feedback about the currently pro-
cessed skills and finally receive a consolidated task representation
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bout how the robot interpreted their demonstration. This makes
he framework suitable for non-expert robot programmers by
uilding trust in the robot and closing the gap between the user’s
ental model of the robot and the robot’s actual knowledge.
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