Rischioni, Lucas Germano and Babu, Arun and Baumgartner, Stefan V. and Krieger, Gerhard (2023) Machine Learning Approaches for Road Condition Monitoring Using Synthetic Aperture Radar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3258059. ISSN 1939-1404.
![]() |
PDF
- Postprint version (accepted manuscript)
50MB |
Official URL: https://ieeexplore.ieee.org/document/10073636
Abstract
Airborne Synthetic Aperture Radar (SAR) has the potential to monitor remotely the road traffic infrastructure on a large scale. Of particular interest is the road surface roughness, which is an important road safety parameter. For this task, novel algorithms need to be developed. Machine learning approaches, such as Artificial Neural Networks (ANN) and Random Forest Regression, which can perform non-linear regression, can achieve this goal. This work considers fully polarimetric airborne radar datasets captured with DLR’s airborne F-SAR radar system. Several machine learning-based approaches were tested on the datasets to estimate road surface roughness. The resulting models were then compared with ground truth surface roughness values and also with the semi-empirical surface roughness model studied in previous work.
Item URL in elib: | https://elib.dlr.de/194372/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Machine Learning Approaches for Road Condition Monitoring Using Synthetic Aperture Radar | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 16 March 2023 | ||||||||||||||||||||
Journal or Publication Title: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/JSTARS.2023.3258059 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Synthetic aperture radar, additive noise, surface roughness, machine learning, vehicle safety. | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||
HGF - Program Themes: | Road Transport | ||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||
DLR - Program: | V ST Straßenverkehr | ||||||||||||||||||||
DLR - Research theme (Project): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > Radar Concepts | ||||||||||||||||||||
Deposited By: | Babu, Arun | ||||||||||||||||||||
Deposited On: | 20 Mar 2023 06:05 | ||||||||||||||||||||
Last Modified: | 19 Oct 2023 15:05 |
Repository Staff Only: item control page