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Abstract—Airborne Synthetic Aperture Radar (SAR) has the
potential to monitor remotely the road traffic infrastructure on a
large scale. Of particular interest is the road surface roughness,
which is an important road safety parameter. For this task, novel
algorithms need to be developed. Machine learning approaches,
such as Artificial Neural Networks (ANN) and Random Forest
Regression, which can perform non-linear regression, can achieve
this goal. This work considers fully polarimetric airborne radar
datasets captured with DLR’s airborne F-SAR radar system.
Several machine learning-based approaches were tested on the
datasets to estimate road surface roughness. The resulting models
were then compared with ground truth surface roughness values
and also with the semi-empirical surface roughness model studied
in previous work.

Index Terms—Synthetic aperture radar, additive noise, surface
roughness, machine learning, vehicle safety.

I. INTRODUCTION

ROADS contribute crucially to the development and eco-
nomic growth of a country, being responsible for bring-

ing several social benefits [1], [2]. They provide access to
different regions of the country and promote economic and
social development [3], [4]. Therefore, monitoring the quality
of road infrastructure and carrying out regular maintenance are
equally important for a country’s economy and also for the
safety of road users. There are several factors that affect the
road surface quality, of which one important is the road surface
roughness [5]. This is because the road surface roughness is
responsible for the friction between the road surface and the
tires of the vehicles [6], [7]. A sufficient level of friction
is required for safe acceleration, steering, and braking of
the vehicles [8]. If the friction is below the required level,
this may cause the vehicle to skid [9], and if the friction is
very high, this can result in increased fuel consumption, tire
abrasion, noise, etc [10]. Although traffic accidents can occur
for a variety of reasons, several studies have shown that poor
’skid resistance’ increases the probability of an accident [8].
Therefore, regular inspection of the road surface is necessary
to ensure that the roughness values of the road surface are
within optimal limits, which in turn can help to reduce the
number of road accidents.

At present, road conditions in Germany are measured in
average once every 4 years by special survey vehicles equipped
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with various measuring devices driving over motorways and
other major roads [11], [12]. The deterioration of the road
surface occurs mainly in the winter season due to repeated
freeze-thaw cycles [13]. This highlights the need to monitor
the condition of the road surface more frequently, preferably
annually. However, with the need for survey vehicles, this
requires a lot of personnel and it is generally a costly and
time-consuming procedure [12].

SAR remote sensing can be considered as an alternative
approach for wide-scale road surface roughness monitoring
because it is sensitive to changes in dielectric values and
roughness of the surface under observation [14]. In addition,
SAR offers high spatial resolution, day-night, and cloud pen-
etration capabilities [15]. It is widely used to estimate soil
roughness of agricultural fields [16]. SAR polarimetry-based
methods, SAR backscattering-based semi-empirical models,
and physical models have been developed to estimate soil
moisture and soil roughness [17]–[20]. However, these models
cannot be used to estimate road surface roughness. Because the
road surfaces have completely different characteristics from
the conditions assumed in the development of these models.
Road surfaces are smoother and roughness is expected to be
only in the millimeter range (1 to 3 mm) [5] and the signal-
to-noise ratio (SNR) expected from a smooth road surface is
much lower compared to the rough agricultural fields. Also,
asphalt and concrete, which are commonly used for road
construction, have a completely different dielectric constant
than the agricultural fields [14].

A few studies can be found in the literature that utilizes
the SAR datasets for road surface quality monitoring. In [21],
the spaceborne L-band ALOS-PALSAR datasets with 7 m
spatial resolution were used to map the relationship between
the SAR backscatter values and the international roughness
index (IRI) values of the roads in Thailand. The IRI is a
widely used parameter to indicate the unevenness of the road
surface [22]. A similar study can be found in [23], where
the spaceborne X-band Cosmo-SkyMed SAR datasets with
3 m spatial resolution were used to derive the IRI of the
roads in the Commonwealth of Virginia, USA. However, both
of the above-mentioned studies used medium-resolution SAR
datasets and did not produce a road surface roughness image
that a road maintenance engineer without SAR knowledge
could use to identify problematic areas on the road. One study
that produced road surface roughness images can be found
in [24]. In [24], the authors used high-resolution airborne X-
band SAR datasets with 25 cm spatial resolution acquired by
the F-SAR sensor of the German Aerospace Center (DLR).
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They developed a semi-empirical model that generated the
surface roughness images as a function of incidence angle and
backscatter values. It is interesting to investigate how well
state-of-the-art machine learning models, that can learn and
adapt to the statistics of the data [25], can estimate the road
surface roughness.

This study evaluates the potential of machine learning mod-
els for estimating road surface roughness using high-resolution
airborne polarimetric SAR datasets and then producing a road
surface roughness image for the end user. Considering the
difficulty of obtaining ground truth data from busy roads to
train the models and validate the results, special attention was
given to develop a methodology to properly train machine
learning models with a small set of ground truth data.

The rest of this article is organized in the following order.
Details about the test sites considered in this study are given in
Section II. Section III provides information about the airborne
SAR datasets and the ground truth data used. The methodology
used to estimate the road surface roughness using the machine
learning models is explained in Section IV. The experimental
results are presented and discussed in detail in Section V.
Section VI concludes this article.

II. TEST SITES

The test sites must contain road surfaces made of different
materials such as concrete and asphalt with different surface
roughness values. Three such test sites were identified and
used for this study.

Fig. 1. Primary test site - Kaufbeuren airfield.

The primary test site is the Kaufbeuren airfield in Bavaria,
Germany. It is a former military airfield that contains runways,
taxiways, and parking areas. The Google Earth image of the
test site is shown in Fig. 1. It can be seen that the two ends of
the runway are concrete, as indicated by the yellow rectangles,
and that the part of the runway between these concrete ends
is asphalt. The photo on the upper left side of Fig. 1 shows
an area of the concrete patch where both smooth concrete and
concrete regions with repeated cuts are present. Similarly, the
photo on the lower right side of Fig. 1 shows an asphalt area
in the middle of the runway where repair works were done
with concrete. The availability of smooth, rough, and cracked

surfaces made of different materials makes Kaufbeuren airfield
a perfect test site for this study. In addition, ground truth (GT)
surface roughness values were collected at this test site, which
are used to train the machine learning models and validate the
results estimated using these models. The details of the GT
data collection are discussed in the next section.

As secondary test sites for this study, the ”Demonstrations-,
Untersuchungs- und Referenzareal der BASt (duraBASt)” [26]
test site in Cologne, and the Wolfsburg motorway intersection
at Braunschweig, both in Germany were considered. Fig. 2(a)
shows the Google Earth image of the duraBASt test site,
which is marked with the yellow ellipse in the zoomed view.
It can be seen that the different regions of the duraBASt
test site consist of materials with different colors, indicating
a different material composition and thus, different surface
roughness values. Fig. 2(b) shows the Google Earth image
of the Wolfsburg motorway intersection. It can be seen that
this test area consists of long highways and a uniform surface
roughness is expected here. However, in the zoom view, a
sudden change in the color of the highway surface can be
seen, indicating a change in surface roughness. This may be
due to a repair where an asphalt mix with a different material
composition was used. Unfortunately, no GT data are available
for the secondary test sites. Therefore, the surface roughness
results obtained from these test sites can only be compared
to the results obtained from the surface roughness estimation
models investigated in previous work [5], [24], [27].

III. DATASETS

The details about the airborne SAR datasets and the ground
truth data used in this study are discussed in this section.

A. Airborne SAR datasets

In this study, fully polarimetric X-band data acquired with
DLR’s airborne F-SAR sensor [28] were used to investigate
road roughness at the three different test sites. Table I shows
the major F-SAR parameters used during data acquisition.

TABLE I
SUMMARY OF THE F-SAR INSTRUMENT PROPERTIES [29]

Frequency band X-band
Frequency (GHz) 9.6
Bandwidth (MHz) 760

Pulse Repetition Frequency (kHz) 1.2
Range resolution (m) 0.25

Azimuth resolution (m) 0.25

The primary data used in this work comprise eleven fully
polarimetric SAR (PolSAR) datasets from the Kaufbeuren test
site. Each of these datasets was acquired in September 2020
with different flight directions and incidence angles, allowing
different views of the runway, taxiway, and parking area at
Kaufbeuren, thus contributing to the diversification of the
data. Table II shows information about the F-SAR datasets
acquired from the Kaufbeuren test site. In addition, datasets
were collected for the duraBASt test in September 2019 and
for the Braunschweig test site in August 2020. All of these
datasets were acquired on dry, sunny days to avoid backscatter

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2023.3258059

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 3

(a) (b)

Fig. 2. Secondary test sites. (a) duraBASt test site. (b) Wolfsburg motorway intersection, Braunschweig.

variations due to rainwater filling the voids or cracks on the
road surface.

TABLE II
INFORMATION ABOUT THE F-SAR DATASETS ACQUIRED FROM THE

KAUFBEUREN TEST SITE

Dataset
ID

Incidence angle
at the runway

Flight track
w.r.t. runway

Flight heading
angle

Used
for

PS02 23◦ to 51◦ 45◦ 91.18◦ Train
PS03 29◦ to 55◦ 45◦ 91.20◦ Test
PS04 30◦ approx. Parallel 201.71◦ Train
PS05 32◦ to 55◦ Across 291.69◦ Train
PS06 32◦ approx. Parallel 21.70◦ Train
PS08 35◦ approx. Parallel 201.72◦ Train
PS10 34◦ approx. Parallel 21.70◦ Train
PS11 39◦ approx. Parallel 201.71◦ Test
PS12 40◦ approx. Parallel 21.70◦ Train
PS13 45◦ approx. Parallel 201.72◦ Train
PS14 45◦ approx. Parallel 21.70◦ Test

B. Ground truth data collection

GT surface roughness values were collected from the Kauf-
beuren test site to train the machine learning-based surface
roughness estimation models and also to validate the surface
roughness values estimated using the F-SAR datasets.

In total ten 1 m² spots on the Kaufbeuren runway and
taxiway were chosen as the GT spots (cf. Fig. 3). The GT spots
were spread across the smooth, rough, and cracked asphalt and
concrete surfaces of the runway, taxiway, and parking area. A
handheld laser scanner was used to collect the GT data. This
scanner was able to measure the vertical surface undulation of
the surface with an accuracy of 0.025 mm.

Fig. 4(a) shows the GT data collection activity using the
handheld laser scanner for the GT spot 1 and Fig. 4(b) shows
the surface undulation image generated for the same spot using
the data acquired by the laser scanner. The surface undulation
values measured for each GT spot were then used to calculate
a single ground truth surface roughness value (GT hrms) using
the following equation:

Fig. 3. Kaufbeuren test site, with emphasis on its ten ground-truth spots.

hrms =

√∑n
i=1(hi − h)2

n− 1
, (1)

where hrms is the root mean square (RMS) height commonly
used to characterize vertical surface roughness [17], hi is the
surface undulation value measured for the ith sample, h is the
mean of all the samples and n is the number of samples.

Table III shows information about minimum and maximum
surface undulations measured at each of the GT spots, the GT
hrms values estimated using (1) and the characteristics of the
GT spots.

IV. METHODOLOGY

To determine the road surface roughness, the hrms param-
eter must be estimated. However, it is not possible to estimate
hrms directly from the SAR data. Fortunately, the effective
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Fig. 4. (a) GT data collection process. (b) Surface undulation image for GT
spot 1, which is the only spot that contains periodically repeated cuts.

TABLE III
INFORMATION ABOUT THE GROUND TRUTH SPOTS

GT spot Surface
undulation [mm] GT hrms Characteristics

Min Max

1 -7.09 2.73 2.36 Concrete area with
repeated cuts

2 -3.00 2.27 0.99 Smooth concrete area
3 -2.53 1.70 0.66 Smooth asphalt area

4 -4.34 1.66 0.88
Smooth area- repair

work done
using concrete

5 -2.45 2.26 0.68 Smooth asphalt area
6 -4.14 2.01 0.98 Smooth concrete area
7 -3.03 2.62 1.09 Smooth concrete area
8 -2.38 1.91 0.61 Concrete, very smooth

9 -13.07 4.25 2.86 Area with deep and
non-oriented cracks

10 -5.82 1.92 0.76 Concrete, very smooth

vertical surface parameter (ks) can be estimated from the SAR
data. The parameter ks is unitless and given as in [17]

ks = (2π/λc)hrms, (2)

where λc is the wavelength of the SAR system. For the X-band
F-SAR system with 9.6 GHz carrier frequency, the value of
λc is 3.12 cm. After estimating ks from the SAR data, (2) can
be easily inverted to calculate hrms. This section describes the
methodology used to train the machine learning-based models
and to estimate ks from the F-SAR datasets.

A. PolSAR Data Preprocessing

Before extracting the features that were used as input to
the machine learning models, it is necessary to preprocess the
data obtained from F-SAR. The block diagram shown in Fig.
5 illustrates the steps performed at this stage.

PolSAR

data

T4 Matrix

Generation

Refined-Lee

Speckle filter (3x3)

Noise Estimation &

Minimization

Features Extraction

Radiometric 

Calibration &

�
0 Image Generation

Fig. 5. Block diagram of the preprocessing scheme for features extraction.

At first, the PolSAR data were used to generate the co-
herency matrix T4, which then is speckle filtered using a 3x3
refined-Lee speckle filter [30]. It is important to emphasize
that, to avoid crosstalk between polarization channels, each
element of the coherency matrix must be filtered independently
in the spatial domain. In addition, each term should be filtered
in a manner similar to multi-look processing by averaging the
coherency matrix of neighboring pixels [31].

After that, the additive noise estimation and minimization
are carried out. This can be achieved by diagonalizing the T4

matrix and evaluating the eigenvalues. In the absence of noise
T4 should be of rank 3 and should have only three non-zero
eigenvalues. Nonetheless, the additive noise makes T4 to be
of rank 4. In this case, the fourth eigenvalue λ4 represents
the additive noise N in the PolSAR data. Thus, the additive
noise on the data can be minimized by subtracting λ4 from
the other three eigenvalues of the coherency matrix [32]. The
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output produced in this step is then used to perform feature
extraction for the machine-learning models.

B. Features Extraction and Data Preparation

A variety of disparity parameters, texture parameters, and
polarimetric parameters were derived from the processed SAR
data, as shown in Table IV.

TABLE IV
SUMMARY OF THE FEATURES EXTRACTED

Parameter Description

Sigma nought Calibrated σ0 intensity of the HH and VV
polarizations

Incidence angle Incidence angle during data acquisition
f2 (Contrast) A measure of local variation

f3 (Correlation) A measure of the linear dependency of
gray levels of neighboring pixels

f4 (Homogeneity) A measure of local homogeneity
f7 (Dissimilarity) A measure of local dissimilarity

Mean Average between neighboring pixels
Standard deviation Standard deviation between neighboring pixels

Entropy Measure of the randomness of the scattering

Anisotropy Relation between the secondary
scattering processes

α Characterizes the scattering mechanism
β Characterizes the dominant polarization

The sigma nought σ0 is calculated for the co-polarization
and cross-polarization channels:

σ0
dB = 10 log10

(
|I|2 sin θinc

)
, (3)

where I denotes the calibrated amplitudes of the input
image, and θinc refers to the local incidence angle [28].

The texture parameters are calculated individually for each
pixel, using a moving window of size 3 x 3. These features
are shown in (4) to (7), where f2, f3, f4, and f7 represent,
respectively, contrast, correlation, homogeneity, and dissimi-
larity of a Gray Level Co-occurrence Matrix (GLCM) [33],
[34]. The remaining parameters obtained from the GLCM do
not indicate any correlation and, therefore, are discarded from
further analyses.

f2 =

N−1∑
i,j=0

[
|i− j|2p (i, j)

]
(4)

f3 =

∑
i

∑
j (ij) p (i, j)− µxµy

σxσy
(5)

f4 =
∑
i

∑
j

1

1 + (i− j)
2 p (i, j) (6)

f7 =
∑
i

∑
j

|i− j|p (i, j) (7)

Besides that, the mean and the standard deviation of a 3 x 3
moving window are considered. At last, the parameters entropy
(H), anisotropy (A), α, and β, obtained from the Cloude-
Pottier Decomposition [35], are calculated.

In statistics, two important correlation coefficients often
used to measure the correlation between two variables are
Pearson and Spearman [36]. Thus, after further analysis of

the correlation of these variables, the parameters that do not
present a direct correlation (Pearson |r| ≲ 0.3) with the surface
roughness previously measured are discarded. In addition,
variables that show a high correlation (Spearman |ρ| ≳ 0.7)
with other remaining variables are also removed, given that
multicollinearity can compromise the performance of machine
learning algorithms [37].

Likewise, the analysis of the Noise-Equivalent Sigma Zero
(NESZ), which is a measure of the sensitivity of the SAR
system to areas of low radar backscatter [38], shows that the
data derived from the HV & VH channels is highly noisy,
given that there is only a tiny backscatter from these channels.
Therefore, the anisotropy, entropy, alpha, and other similar
parameters which require the cross-polarization channels are
discarded from further analysis.

As a result, the relevant features that are used as input to
the machine learning models are shown in Table V.

TABLE V
SUMMARY OF THE SELECTED FEATURES

Parameter Description

Sigma nought Calibrated σ0 intensity of the various available
polarizations

Incidence angle Incidence angle during data acquisition
Mean Average between neighboring pixels

Standard deviation Standard deviation between neighboring pixels

PolSAR

Extracted

Features

Split Datasets

Feature Scaling

Regression Models

Model Evaluation and

Fine Tuning

Surface Roughness

Image

Fig. 6. Block diagram of the data pre-processing to train the machine learning
models.

Finally, before performing data ingestion to train the mod-
els, it is necessary to prepare them properly. For this reason,
the flowchart shown in Fig. 6 is considered. At first, the data is
split into 8 datasets for training and 3 datasets for testing. After
performing feature scaling, which is important to ensure that
a feature with a relatively higher magnitude will not govern
or control the trained model, several regression models are
studied, from linear models such as linear regression to more
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complex non-linear models, such as Artificial Neural Network
(ANN), Support Vector Regression (SVR), and Random Forest
Regression (RFR) [36].

C. Machine Learning Models and Techniques Used

In this subsection, the used machine learning techniques are
presented in more detail, introducing the major assumptions
and considerations adopted for the Support Vector Regression
(SVR), Decision Trees, Random Forest Regression (RFR),
and Artificial Neural Network (ANN). Moreover, the Cross
Validation and Bagging techniques are presented and discussed
in greater depth.

1) Support Vector Regression: A Support Vector Machine
(SVM) is a powerful and versatile Machine Learning model,
capable of performing linear or nonlinear classification, regres-
sion, and even outlier detection. This technique is an extension
of the support vector classifier that results from enlarging the
feature space using kernels, implicitly mapping their inputs
into high-dimensional feature spaces [36]. The SVM can also
be adapted to solve regression problems, in which case it is
called Support Vector Regression. Essentially, it provides the
flexibility to define how much error is acceptable in the model
and it will find an appropriate line (or hyperplane in higher
dimensions) to fit the data. In this research, the Radial Basis
Function (RBF) kernel was adopted, which can be described
by:

K(x, x′) = e−γ∥x−x′∥ (8)

where ∥x−x′∥ is the squared Euclidean distance between two
feature vectors (x and x′) and γ is a coefficient that defines
how much influence a single training example has [39]. For
this work, the γ was set to 1/(nfeaturesσ

2), in which σ2

stands for the variance of X and nfeatures is the number of
features in the model. Moreover, another important parameter
for the SVR model is the regularization parameter C, which
is responsible for avoiding possible overfitting of the model.
After testing several values, this parameter was set to C = 1
for this study.

2) Decision Trees: Decision Trees can also be applied to
both regression and classification problems. Tree-based meth-
ods partition the feature space into a set of rectangles and then
fit a simple model to each one. They are conceptually simple
yet powerful. However, since isolated decision trees have a
high variance, they typically are not competitive with the best
supervised learning approaches. For this reason, decision trees
are the ideal candidates for bagging [36], whose main idea is
to average many noisy but relatively unbiased models, and
therefore, reduce the variance.

3) Random Forest Regression: Random Forest is known
as an ensemble machine learning technique that involves the
creation of hundreds of decision tree models. Essentially, the
Random Forest algorithm takes advantage of the bagging
technique, constructing multiples of individual decision trees
for each sample and averaging the results, generating a final
output with reduced variance. This way, it is possible to
capture complex interaction structures in the data, and if
grown sufficiently deep, have relatively low bias [36], [39].

However, to prevent the trees from being too deep and to
avoid overfitting, the maximum depth for the Random Forest
Regression model was set to 5. Moreover, another relevant
parameter in this model is the criterion (loss function) to be
used during the training [36]. This parameter is responsible
for measuring the quality of a split. For this work, the Mean
Squared Error (MSE) was chosen, which is equal to variance
reduction as a feature selection criterion.

4) Artificial Neural Network: The Artificial Neural Net-
work (ANN), which applies both for regression and classifi-
cation problems, is often represented by a network diagram as
shown in Fig. 7. The basic idea behind this model is to extract
linear combinations of the inputs as derived features and then
model the target as a non-linear function of these resulting
features [40]. For regression models, normally K = 1 and
there is only one output unit Y1 at the top. Derived features Zm

are created from linear combinations of the inputs X , and then
the target Yk is modeled as a function of linear combinations
of the Zm, as given by

Zm = σ
(
α0m + αT

mX
)
, m = 1, ...,M,

Tk = β0k + βT
k Z, k = 1, ...,K, (9)

fk (X) = gk (T ) , k = 1, ...,K

where Z = (Z1, Z2, ..., ZM ) and T = (T1, T2, ..., TK). In
this equation, αm and βk denote the weights for the inputs
X and for the hidden layers, respectively. The activation
function σ(v) is usually chosen to be the sigmoid function
σ(v) = 1/(1 + e − v) [36], [39]. In addition to the sigmoid
function, there are also other activation functions broadly used
in deep learning, such as logistic sigmoid, hyperbolic tangent
(tanh), rectified linear units (ReLU), exponential linear unit
(ELU), and scaled exponential linear unit (SELU) [40]. Fi-
nally, the output function gk(T ) provides a final transformation
of the outputs T . For regression problems, usually, the identity
function gk(T ) = Tk is adopted.

. . . .

. . . .
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1

X
2

X
3

Z
2

Z
3
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Y
1

Y
2

. . . .

X
p

Z
m

Y
k

Input Layer

Hidden Layer

Output Layer

Fig. 7. Example diagram of a single-hidden-layer neural network. Adapted
from [36].
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After testing several ANN architectures, as well as compar-
ing the performance of different activation functions, the final
architecture for this model was chosen, as shown in Fig. 8. The
final model is a Multi-Layer Perceptron (MLP), containing
2 hidden layers with 30 units each (without considering the
bias unit). In addition, the first two layers used the Hyperbolic
Tangent activation function, while the last layer used the linear
function.

Input Layer 

Hidden Layer 

Hidden Layer 

Output Layer

Fig. 8. Architecture chosen for the Artificial Neural Network model.

To evaluate the model’s performance, the Root Mean
Squared Error (RMSE) is used as a reference parameter:

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)
2 (10)

5) K-fold Cross Validation: In scenarios where the data are
often scarce, it is usually not possible to separate a validation
set and use it to assess the model’s prediction performance.
This can harm the model’s efficiency since it might suffer from
overfitting and therefore becoming not reliable [39]. To address
this issue, techniques such as cross-validation [36] were used
in order to enhance reliability and reduce the variance of the
results.

The K-fold cross-validation technique uses part of the
available data to fit the model and a different part to test it. The
data is split into K pieces of approximately equal size. Fig.
9 illustrates a scenario in which K = 5. For the kth part, the
model is fitted to the other K−1 parts of the data and calculate
the prediction error of the fitted model when predicting the kth

part of the data. This is done for k = 1, 2, ...,K and the K
estimates of prediction error are combined.

6) Bagging: Another useful technique in these scenarios is
Bagging, which is a general-purpose procedure for reducing
the variance of a statistical learning method. It basically
consists of taking many training sets from the population,
training a separate prediction model using each training set,
and then averaging the resulting predictions. In other words,
the bagging comprises computing f̂1(x), f̂2(x), ..., f̂B(x)

TestIteration 1 Train Train Train Train

TrainIteration 2 Test Train Train Train

TrainIteration 3 Train Test Train Train

TrainIteration 4 Train Train Test Train

TrainIteration 5 Train Train Train Test

Fig. 9. Scenario example for K-fold cross-validation in which K = 5.
Adapted from [36].

Fig. 10. Scenario example illustrating the Bagging technique.
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using B separate training sets, and average them in order
to obtain a single low-variance statistical learning model,
given by f̂avg(x) =

1
B

∑B
b=1 f̂

b(x) [36]. This architecture is
illustrated in Fig. 10.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section discusses the surface roughness estimation
results obtained using the methods described in the previous
section.

To validate the surface roughness results obtained from
the machine learning models, the results must be compared
to the ground-truth surface roughness values as well as to
the surface roughness results obtained from the roughness
estimation models commonly used in the literature. However,
as already mentioned in the introduction section of this article,
these models are originally developed for agricultural lands
and are not suitable for a road surface. This can be further
verified by analyzing the σ0 and NESZ values on the road
surfaces.

Fig. 11. σ0 and NESZ plots for the Kaufbeuren runway

Fig. 11 shows the σ0 and NESZ plots for the Kaufbeuren
runway. The values are plotted from one end of the runway
to the other for the F-SAR PS05 dataset where the runway is
along range direction. Therefore, the incidence angle increases
from one end of the runway to the other. In Fig. 11, the
blue represents the σ0 values in HH polarization, the orange
in VV polarization, the green represents the cross-polarized
σ0 values, and the red shows the NESZ as a function of
incidence angle. It can be seen that the σ0 values for HH
and VV co-polarizations stay above the NESZ level even at
shallow incidence angles. This means that the backscattered
signal from the roads in the co-polarization channels is above
the noise floor of the SAR system. On the other hand, the
cross-polarized σ0 data (green plot) fall below the NESZ level
for the road surface as the incidence angle increases. This
means that the backscattered signal from the roads in the cross-
polarization channels is dominated by noise and is not suitable
for estimating road surface roughness. As mentioned in the
methodology section, this is the reason why HV and VH cross-
polarization channels are not used as input to the machine
learning models. The SAR polarimetry-based models [17] and

the Oh models [18], [19] used in the literature for rough-
ness estimation require the cross-polarization channels and
hence cannot be used for road surface roughness estimation.
The remaining models that require only the co-polarization
channels are the semi-empirical Dubois model [20] and the
modified Dubois model specifically developed for the road
surface roughness estimation [24]. In [24], it was shown that
the Dubois model has an incidence angle dependency and
cannot estimate the roughness changes between concrete and
asphalt surfaces at steeper incidence angles, which led to the
development of the modified Dubois model for road surface
roughness estimation. Therefore, the surface roughness results
obtained with the machine learning models are compared with
the modified Dubois model from [24].

At the primary test site in Kaufbeuren, the results were
compared with the ground-truth values as well as with the
modified Dubois model. On the other hand, in the secondary
test sites, the results were only compared to the modified
Dubois model results, since there is no ground-truth data
available.

A. Kaufbeuren Test Site

After training the SVR, RFR, and ANN models with the
eight training datasets (cf. Table II), these models were then
applied to the three test datasets for calculating the road sur-
face roughness (hrms) values. For evaluating the performance
of these models, the hrms values were estimated for the GT
spots. Then the RMSE between the model estimated hrms

and GT hrms values were calculated for both the train and
test datasets. The GT spot 9 was not used in this analysis
due to a severe crack causing a bias. Moreover, the GT spot
10 was also left out of the analysis because the system did
not receive a strong enough signal from it, resulting in a low
signal-to-noise ratio (SNR).

Fig. 12. RMSE values estimated from the test datasets for the machine
learning models at the Kaufbeuren runway test site.

Fig. 12 shows the RMSE values obtained for the SVR, RFR,
and ANN models from the three test datasets. For the PS03
dataset, which has a 45◦ flight track w.r.t. the Kaufbeuren
runway, the RFR model has the lowest RMSE of 0.33 mm.
The highest RMSE of 0.37 mm is observed for the SVR model.
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For the PS11 dataset, which was acquired with a flight track
parallel to the runway and also with an incidence angle of
approximately 39◦ at the runway, the RFR model has the
lowest RMSE of 0.35 mm and the highest RMSE of 0.38
mm is obtained for the ANN model. The PS14 dataset was
also acquired with a flight track parallel to the runway and
with an incidence angle of approximately 45◦ at the runway.
For this dataset, the lowest RMSE of 0.41 mm was observed
for the SVR model and the highest RMSE of 0.43 mm was
observed for the RFR model.

From Fig. 12, it can be seen that the RMSE for the
models varies depending on the datasets. However, from all
test datasets and models, it can be seen that the lowest RMSE
is 0.33 mm and the highest RMSE is 0.43 mm, which is not a
large variation. Table VI summarizes the mean RMSE values,
by taking the mean from multiple datasets for both the training
set and the test set. It can be seen that for the training set, the
lowest RMSE is 0.32 mm for the SVR model and the highest
RMSE is 0.36 mm for the RFR model. In the case of the test
set, the lowest RMSE of 0.37 mm is obtained for the ANN
model and the highest RMSE of 0.39 mm is obtained for both
the SVR and RFR models. It can be seen from both Fig. 12
and Table VI that the RMSE variations for all the models
are very low, which shows the consistency of the models in
estimating the hrms values.

TABLE VI
MEAN RMSE FOR BOTH THE TRAINING AND TEST DATASETS AT THE

KAUFBEUREN TEST SITE

Model RMSE Training
[mm]

RMSE Test
[mm]

Artificial Neural Network (ANN) 0.35 0.37
Support Vector Regression (SVR) 0.32 0.39
Random Forest Regression (RFR) 0.36 0.39

Fig. 13 and Fig. 14 show the surface roughness (hrms)
images generated from the PS14 and PS03 test datasets,
respectively. As mentioned before, the PS14 dataset was
acquired with a flight track parallel to the runway with an
incidence angle of approximately 45◦, and the PS03 dataset
was acquired with a 45◦ flight track w.r.t. the runway and
the incidence angle varies from 29◦ to 55◦ from one end of
the runway to the other. Figs. 13(a) and 14(a) were generated
using the ANN model, Figs. 13(b) and 14(b) using the SVR
model. The RFR model results are shown in Figs. 13(c) and
14(c). It is important to note that in these figures the areas
outside the runway, taxiway, and parking space are not valid,
but were not cut out since no geocoding was done.

Fig. 15 shows the hrms generated using the modified Dubois
model for the PS03 dataset. In contrast to Fig. 13 and Fig.
14, this image was geocoded and had the irrelevant regions
removed. By comparing all the hrms images shown in Fig. 13
and Fig. 14 with Fig. 15, it can be seen that the hrms images
generated by the ANN, SVR, and RFR models are matching
with the hrms image generated by the modified Dubois model.
In all the images, the asphalt regions are appearing primarily
in blue color indicating roughness values in the 0.5 to 1.0 mm
range. The concrete regions at both ends of the runway are
appearing in yellow color indicating higher surface roughness

in the 1.0 to 1.5 mm range. Also, the concrete areas with cuts
on the top end of the runway are appearing in green color
indicating higher roughness (1.5 to 2.0 mm range) compared
to the other concrete regions without cuts. This is more evident
in the PS03 dataset due to its 45◦ flight track to the runway
which resulted in more backscattering from the cuts in the
concrete. By further comparing the results with Fig. 3 and
Table. III, it can be observed that the ANN, SVR, and RFR
models were able to distinguish the different compositions in
the runway structure.

TABLE VII
COMPARISON OF SURFACE ROUGHNESS RESULTS AT GT SPOTS BY

AVERAGING MULTIPLE DATASETS

GT
spot

GT
hrms

(mm)

Modif.
Dubois
Model

ANN
Model

SVR
Model

RFR
Model

1 2.36 1.78 1.50 1.42 1.37
2 0.99 1.14 1.09 1.05 1.10
3 0.66 0.60 0.69 0.68 0.72
4 0.88 1.40 1.29 1.32 1.26
5 0.68 0.80 1.00 0.89 0.77
6 0.98 0.79 0.93 0.82 0.79
7 1.09 1.28 1.30 1.31 1.21
8 0.61 0.59 0.65 0.69 0.72

RMSE
(mm) 0.299 0.365 0.388 0.389

Additionally, Table VII lists the hrms values estimated at
each ground-truth spot for each model examined in this study.
The obtained surface roughness from this investigation was
calculated by taking the average of three test datasets. By
comparing the results, it can be seen that the machine learning
models were consistent with the modified Dubois model, dis-

(a)

(b)

(c)

Fig. 13. Surface roughness images obtained from Kaufbeuren test datasets for
several regression models. (a) Artificial Neural Network. (b) Support Vector
Regression. (c) Random Forest Regression.
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(a) (b) (c)

Fig. 14. Surface roughness image obtained from an alternative Kaufbeuren test dataset for several regression models. (a) Artificial Neural Network. (b)
Support Vector Regression. (c) Random Forest Regression.

Fig. 15. Kaufbeuren surface roughness image for the modified Dubois model
[24].

playing similar results. Moreover, among the machine learning
models, although the Random Forest Regression did not have
the lowest RMSE value, it achieved the best result. In fact, this
can be seen in the surface roughness images (Fig. 13(c) and
Fig. 14(c)), in which this model presented the lowest noise
when compared to the others.

B. DuraBASt Test Site

Likewise, the hrms images generated using the ANN, SVR,
and RFR models for the duraBASt test site are shown in Fig.
16. This test site proved to be much noisier than the previous
one. This happens because, unlike the previous test site, there
is intense vehicle traffic in the region, which interferes with
the data obtained by the SAR. In the same way, the vegetation
close to the highway also generates shadow regions harming
the model’s performance [41].

Nonetheless, it is still possible to compare the performance
of the models with the modified Dubois model. The hrms

images generated using the ANN, SVR, and RFR models are
shown in Figs. 16(a), (b), and (c), respectively. Fig. 16(d)
shows the hrms image generated using the modified Dubois
model. It can be seen that the surface roughness results
estimated by the ANN, SVR, and RFR models are matching
with the modified Dubois model result. The smooth areas on
the duraBASt test site are appearing in blue color indicating
low surface roughness and the rougher regions are appearing in
yellow color indicating higher values of surface roughness. In
addition, a sudden change in surface roughness can be noticed
in the nearby highway indicated by the color change from
blue to yellow and green, which is probably due to a different
material composition. In fact, also the optical image in Fig.
16(e) shows a change in the appearance of the road surface in
the smooth and rough regions both on the duraBASt test site
and on the highway.

C. Wolfsburg Motorway Intersection, Braunschweig

The hrms images for the Braunschweig motorway test site
are shown in Fig. 17. Fig. 17(a) shows the hrms result from
the ANN model, Fig. 17(b) from the SVR model, the hrms

estimated using the RFR model is shown in Fig. 17(c). It can
be seen that most parts of the motorway are appearing in blue
color indicating hrms values in the range of 0.5 mm to 1.0
mm. However, in the area shown in the detailed view, a sudden
change in color from blue to yellow can be observed which
indicates a higher surface roughness in the range of 1.0 to
1.5 mm range. Similar to the duraBASt test site, this sudden
change in surface roughness may also be due to the use of
materials with different compositions during a maintenance
activity. Again, the ANN, SVR, and RFR models proved
capable of distinguishing the different compositions on the
road. Moreover, it can be seen that the results obtained by
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(a) (b) (c)

(d) (e)

Fig. 16. Surface roughness results for the duraBASt test site, with results obtained using (a) Artificial Neural Network, (b) Support Vector Regression, (c)
Random Forest Regression, and (d) Modified Dubois model. (e) Corresponding Google-Earth image.
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(a) (b)

(c) (d)

Fig. 17. Braunschweig motorway surface roughness images obtained with different regression models. (a) Artificial Neural Network. (b) Support Vector
Regression. (c) Random Forest Regression. (d) Modified Dubois model.

the machine learning models are consistent with the result
generated by the modified Dubois model (Fig. 17(d)).

VI. CONCLUSION

This paper proposes a new machine learning-based approach
for monitoring road surface roughness using a fully polarimet-
ric airborne SAR system. It was shown that the used X-band
data have a good sensitivity in relation to the road surface
roughness and, therefore, present a high potential to estimate
the surface roughness in a fast and efficient way. Furthermore,
it was observed that the low radar backscatter obtained from
the smooth road surface complicates the estimation process
and it is initially necessary to minimize the additive noise in
the datasets. Moreover, the cross-polarized channels proved to
be very noisy, thus the parameters and models dependent on
these channels showed to be unreliable. Despite the challenges
due to the additive noise and the shadow regions, the results
of the machine learning models are consistent with the results
of the recently introduced modified Dubois model [24] and
the ground truth data, showing good potential for further
research. It is worth noting that the semi-empirical modified

Dubois model still gives slightly better results, and is also
more computationally efficient and faster compared to machine
learning-based models. However, the performance of the semi-
empirical model is limited to the validity range and other
conditions assumed during its development. On the other hand,
machine learning models can adapt to variations in data and
environments. Therefore, the semi-empirical modified Dubois
model can be a good option for road surface roughness estima-
tion when the input data meets the model’s validity conditions.
In other situations, machine learning-based models may be
more suitable for better road surface roughness estimation. In
future studies, further experiments using other bands, such as
the Ka-band, could improve the roughness estimation results
significantly. Currently we are investigating high-resolution X-
band SAR data acquired with the German TerraSAR-X radar
satellite to determine if even in the spaceborne case the SNR is
high enough for a reliable road surface roughness estimation.
The first results are promising and will be published in a
follow-up paper.
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